Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2015_2_4_a9, author = {G. A. Zakirova and E. V. Kirillov}, title = {The existence of solution of the inverse spectral problem for discrete self-adjoint semi-bounded from below operator}, journal = {Journal of computational and engineering mathematics}, pages = {95--99}, publisher = {mathdoc}, volume = {2}, number = {4}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2015_2_4_a9/} }
TY - JOUR AU - G. A. Zakirova AU - E. V. Kirillov TI - The existence of solution of the inverse spectral problem for discrete self-adjoint semi-bounded from below operator JO - Journal of computational and engineering mathematics PY - 2015 SP - 95 EP - 99 VL - 2 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2015_2_4_a9/ LA - en ID - JCEM_2015_2_4_a9 ER -
%0 Journal Article %A G. A. Zakirova %A E. V. Kirillov %T The existence of solution of the inverse spectral problem for discrete self-adjoint semi-bounded from below operator %J Journal of computational and engineering mathematics %D 2015 %P 95-99 %V 2 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCEM_2015_2_4_a9/ %G en %F JCEM_2015_2_4_a9
G. A. Zakirova; E. V. Kirillov. The existence of solution of the inverse spectral problem for discrete self-adjoint semi-bounded from below operator. Journal of computational and engineering mathematics, Tome 2 (2015) no. 4, pp. 95-99. http://geodesic.mathdoc.fr/item/JCEM_2015_2_4_a9/
[1] S. I. Kadchenko, “Numerical Method for the Solution of Inverse Problems Generated by Perturbations of Self-Adjoint Operators by Method of Regularized Traces”, Vestnik of Samara State University, 2013, no. 6 (107), 23–30
[2] S. I. Kadchenko, “A Numerical Method for Solving Inverse Problems Generated by the Perturbed Self-Adjoint Operators”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 6:4 (2013), 15–25 | Zbl
[3] S. I. Kadchenko, “Solution of Inverse Spectral Problems Generated by the Perturbed Self-Adjoint Operators by Method of Regularized Traces”, Vestnik MaGU. Mathematics, 15 (2013), 34–43
[4] S. I. Kadchenko, “Numerical Method for Solving Inverse Spectral Problems Generated by Perturbed Self-Adjoint Operators”, Vestnik of Samara State University, 2013, no. 9-1(110), 5–11 | Zbl
[5] G. A. Zakirova, A. I. Sedov, “An Inverse Spectral Problem for Laplace Operator and it's Approximate Solution”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2:27 (127) (2008), 19–27 | Zbl
[6] G. A. Zakirova, A. I. Sedov, “An Inverse Problem for the Laplace Operator in the Isosceles Rectangular Triangle”, Vestnik of Samara State University, 2008, no. 2, 34–42 | MR | Zbl