Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2015_2_4_a1, author = {A. V. Sulimov and A. N. Meshkov and I. A. Savkin and E. V. Katkova and D. K. Kutov and Z. B. Hasanova and N. V. Konovalova and V. V. Kukharchuk and V. B. Sulimov}, title = {Genome-wide analysis of genetic associations for prediction of polygenic hypercholesterolemia with {Bayesian} networks}, journal = {Journal of computational and engineering mathematics}, pages = {11--26}, publisher = {mathdoc}, volume = {2}, number = {4}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2015_2_4_a1/} }
TY - JOUR AU - A. V. Sulimov AU - A. N. Meshkov AU - I. A. Savkin AU - E. V. Katkova AU - D. K. Kutov AU - Z. B. Hasanova AU - N. V. Konovalova AU - V. V. Kukharchuk AU - V. B. Sulimov TI - Genome-wide analysis of genetic associations for prediction of polygenic hypercholesterolemia with Bayesian networks JO - Journal of computational and engineering mathematics PY - 2015 SP - 11 EP - 26 VL - 2 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2015_2_4_a1/ LA - en ID - JCEM_2015_2_4_a1 ER -
%0 Journal Article %A A. V. Sulimov %A A. N. Meshkov %A I. A. Savkin %A E. V. Katkova %A D. K. Kutov %A Z. B. Hasanova %A N. V. Konovalova %A V. V. Kukharchuk %A V. B. Sulimov %T Genome-wide analysis of genetic associations for prediction of polygenic hypercholesterolemia with Bayesian networks %J Journal of computational and engineering mathematics %D 2015 %P 11-26 %V 2 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCEM_2015_2_4_a1/ %G en %F JCEM_2015_2_4_a1
A. V. Sulimov; A. N. Meshkov; I. A. Savkin; E. V. Katkova; D. K. Kutov; Z. B. Hasanova; N. V. Konovalova; V. V. Kukharchuk; V. B. Sulimov. Genome-wide analysis of genetic associations for prediction of polygenic hypercholesterolemia with Bayesian networks. Journal of computational and engineering mathematics, Tome 2 (2015) no. 4, pp. 11-26. http://geodesic.mathdoc.fr/item/JCEM_2015_2_4_a1/
[1] V. L. Roger, A. S. Go, D. M. Loyd-Jones, et al., “Heart Disease and Stroke Statistics - 2012 Update: A Report from the American Heart Association”, Circulation, 125:1 (2012), e2–e220 | DOI
[2] W. B. Kannel, T. R. Dawber, A. Kagan, N. Revotskie, J. 3rd Stokes, “Factors of Risk in the Development of Coronary Heart Disease”, Six Year Follow-up Experience. The Framingham Study. Ann Intern Med, 55:1 (1961), 33–50 | DOI
[3] A. Keys, “Coronary Heart Disease in Seven Countries: 1. The Study Program and Objectives”, Circulation, 41:4S (1970), 1-1-1-8
[4] F. Gianfagna, D. Cugino, I. Santimone, L. Iacoviello, “From Candidate Gene to Genome-Wide Association Studies in Cardiovascular Disease”, Thromb Res, 129:3 (2012), 320–324 | DOI
[5] Y. Y. Teo, X. Sim, “Patterns of Linkage Disequilibrium in Different Populations: Implications and Opportunities for Lipid-Associated Loci Identified from Genome-Wide Association Studies”, Curr Opin Lipidol, 21:2 (2010), 104–115 | DOI
[6] W. Zhou, D. C. Christiani, “East Meets West: Ethnic Differences in Epidemiology and Clinical Behaviors of Lung Cancer Between East Asians and Caucasians”, Chinese Journal of Cancer, 30:5 (2011), 287–292 | DOI
[7] S. G. Urazalin, V. N. Titov, T. N. Vlasic, T. V. Balahonova, Yu. A. Karpov, V. In. Kukharchuk, S. A. Fighters, “Relationship concentrations of lipoprotein-associated secretory phospholipase A2 with markers of subclinical atherosclerotic lesions of the arterial wall in patients with low and intermediate risk scale SCORE”, Therapeutic Archives, 83:9 (2011), 29–35
[8] S. G. Urazalin, A. N. Rogoza, T. V. Balahonova, “The value of markers of preclinical lesions wall of the carotid artery to determine the cardiovascular risk scale Recommendations ESH / ESC (2003, 2007)”, Cardiovascular therapy and prevention, 10:7 (2011), 74–80
[9] D. A. Jdanov, A. D. Deev, D. Jasilionis, S. A. Shalnova, M. A. Shkolnikova, V. M. Shkolnikov, “Recalibration of the SCORE Risk Chart for the Russian Population”, European Journal of Epidemiology, 29:9 (2014), 621–628 | DOI
[10] B. F. Voight, H. M. Kang, J. Ding, C. D. Palmer, C. Sidore, et al, “The Metabochip, a Custom Genotyping Array for Genetic Studies of Metabolic, Cardiovascular, and Anthropometric Traits”, PLoS Genet, 8:8 (2012), e1002793 | DOI
[11] S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira, D. Bender, J. Maller, P. Sklar, P. I. de Bakker, M. J. Daly, P. C. Sham, “PLINK: a Toolset for Whole-Genome Association and Population-Based Linkage Analysis”, American Journal of Human Genetics, 81:3 (2007), 559–575 | DOI
[12] W. Jian, S. Sanjay, “A Powerful Hybrid Approach to Select Top Single-Nucleotide Polymorphisms for Genome-Wide Association Study”, BMC Genetics, 12:3 (2011), 3–9
[13] R. J. Klein, C. Zeiss, E. Y. Chew, J.-Y. Tsai,R. S. Sackler, C. Haynes , Henning A.K., SanGiovanni J.P., Mane S.M., Mayne S.T., et al, “Complement Factor H Polymorphism in Age-Related Macular Degeneration”, Science, 308:5720 (2005), 385–389 | DOI
[14] P. J. Lucas, L. C. van der Gaag, A. Abu-Hanna, “Bayesian Networks in Biomedicine and Health-Care”, Artif Intell Med, 30:3 (2004), 201–214 | DOI
[15] O. Gevaert, F. D. Smet, D. Timmerman, Y. Moreau, B. D. Moor, “Predicting the Prognosis of Breast Cancer by Integrating Clinical and Microarray Data with Bayesian Networks”, Bioinformatics, 22:14 (2006), e184–e190 | DOI
[16] A. V. Sulimov, D. N. Vtyurina, A. N. Romanov, E. D. Maslennikov, V. B. Sulimov, I. N. Kurochkin et al., “Expert Systems of Personalized Medicine: the Use of Bayesian Networks to Predict the State of Patients”, Post-Genomic Research and Technology, 2011, 641-702
[17] D. P. Genis, A. V. Sulimov, N. I. Moiseev, Oh. G. Ovsy, L. Z. Velsher, E. Yu. Rybalkina, I. I. Selezneva, I. A. Savkin, “Search of approaches to predict breast cancer outcomes using Bayesian networks”, Oncology. Journal of them. PA Herzen, 2014, no. 9, 37–46
[18] E. D. Maslennikov, A. V. Sulimov, I. A. Savkin, M. A. Evdokimova, D. A. Zateyshchikov, V. V. Nosikov, V. B. Sulimov, “An Intuitive Risk Factors Search Algorithm: Usage of the Bayesian Network Technique in Personalized Medicine”, Journal of Applied Statistics, 42:1 (2014), 71–87 | DOI | MR
[19] F. V. Jensen, T. D. Nielsen, Bayesian Networks and Decision Graphs, Springer Verlag, New York, 2007, 441 pp. | MR | Zbl
[20] T. Fawcett, “ROC Graphs: Notes and Practical Considerations for Researchers”, ReCALL, 31:HPL-2003-4 (2004), 1–38
[21] N. A. Obuchowski, “ROC Analysis”, American Journal of Roentgenology, 184:2 (2005), 364–372 | DOI
[22] GenomeStudio Software, } {\tt http://www.illumina.com/techniques/microarrays/array-data-analysis-experimental-design/genomestudio.html
[23] B. L. Van der Waerden, Mathematische statistik, Springer-Verlag, Berlin–Gottingen–Heidelberg, 1960, 84 pp. | MR
[24] L. Jay Devore, N. Kenneth, Berk Modern Mathematical Statistics with Applications, Springer-Verlag, New York, 2012, 200 pp. | MR
[25] D. P. Gens, V. B. Sulimov, N. I. Moiseev, A. V. Sulimov, O. G. Ovsy, method for predicting outcome of breast cancer, Patent of Russian Federation 06.2014 No 2563437, stated 26.06.2014, publ. 20.09.2015