Numerical investigation of one Sobolev type mathematical model
Journal of computational and engineering mathematics, Tome 2 (2015) no. 3, pp. 72-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to a numerical investigation of the Boussinesq – Love mathematical model. Algorithm for finding of the numerical solution to the Cauchy – Dirichlet problem for the Boussinesq – Love equation modeling longitudinal oscillations in a thin elastic rod with regard to transverse inertia was obtained on the basis of a phase space method and by using a finite differences method. This problem can be reduced to the Cauchy problem for the Sobolev type equation of the second order, which is not solvable for arbitrary initial values. The constructed algorithm includes the additional check if initial data belongs to the phase space. The algorithm is implemented as a program in Matlab. The results of numerical experiments are obtained both in regular and degenerate cases. The graphs of obtained solutions are presented in each case.
Keywords: Boussinesq – Love equation, Cauchy – Dirichlet problem, finite differences method, Sobolev type equation, phase space, conditions of data consistency, system of difference equations, the Thomas algorithm.
@article{JCEM_2015_2_3_a7,
     author = {A. A. Zamyshlyaeva and S. V. Surovtsev},
     title = {Numerical investigation of one {Sobolev} type mathematical model},
     journal = {Journal of computational and engineering mathematics},
     pages = {72--80},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2015_2_3_a7/}
}
TY  - JOUR
AU  - A. A. Zamyshlyaeva
AU  - S. V. Surovtsev
TI  - Numerical investigation of one Sobolev type mathematical model
JO  - Journal of computational and engineering mathematics
PY  - 2015
SP  - 72
EP  - 80
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2015_2_3_a7/
LA  - en
ID  - JCEM_2015_2_3_a7
ER  - 
%0 Journal Article
%A A. A. Zamyshlyaeva
%A S. V. Surovtsev
%T Numerical investigation of one Sobolev type mathematical model
%J Journal of computational and engineering mathematics
%D 2015
%P 72-80
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2015_2_3_a7/
%G en
%F JCEM_2015_2_3_a7
A. A. Zamyshlyaeva; S. V. Surovtsev. Numerical investigation of one Sobolev type mathematical model. Journal of computational and engineering mathematics, Tome 2 (2015) no. 3, pp. 72-80. http://geodesic.mathdoc.fr/item/JCEM_2015_2_3_a7/

[1] A. Lyav, Matematicheskaya teoriya uprugosti, ONTI, M.–L., 1935, 674 pp.

[2] A. A. Zamyshlyaeva, “Matematicheskie modeli sobolevskogo tipa vysokogo poryadka”, Vestnik YuUrGU. Seriya: Matematicheskoe modelirovanie i programmirovanie, 7:2 (2014), 5–28 | Zbl

[3] A. A. Zamyshlyaeva, E. V. Bychkov, “Fazovoe prostranstvo modifitsirovannogo uravneniya Bussineska”, Vestnik YuUrGU. Seriya: Matematicheskoe modelirovanie i programmirovanie, 2012, no. 18 (277), 13–19 | Zbl

[4] A. A. Zamyshlyaeva, A. V. Yuzeeva, “Nachalno-konechnaya zadacha dlya uravneniya Bussineska - Lyava”, Vestnik YuUrGU. Seriya: Matematicheskoe modelirovanie i programmirovanie, 2010, no. 16 (192), 23–31 | Zbl

[5] A. A. Zamyshlyaeva, O. N. Tsyplenkova, “Optimalnoe upravlenie resheniyami nachalno-konechnoi zadachi dlya uravneniya Bussineska - Lyava”, Vestnik YuUrGU. Seriya: Matematicheskoe modelirovanie i programmirovanie, 2012, no. 5 (264), 13–24 | Zbl

[6] A. A. Zamyshlyaeva, A. S. Muravev, “Issledovanie matematicheskoi modeli Bussineska - Lyava”, Vestnik Magnitogorskogo gosudarstvennogo universiteta. Seriya: Matematika, 2013, no. 15, 24–34

[7] G. A. Sviridyuk, T. G. Sukacheva, “Fazovye prostranstva odnogo klassa operatornykh polulineinykh uravnenii tipa Soboleva”, Differentsialnye uravneniya, 26:2 (1990), 250–258 | MR | Zbl