The splitting of the domain of the definition of the elliptic self-adjoint pseudodifferential operator
Journal of computational and engineering mathematics, Tome 2 (2015) no. 3, pp. 60-64

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we researched domain splitting of self-adjoint elliptic pseudodifferential operator. In particular the Laplace – Beltrami operator in the space of smooth differential k-forms defined on a smooth compact oriented Riemannian manifold without boundary be such operator. This result can be used in model with Sobolev type equations.
Keywords: differential k-forms, Riemannian manifold, Sobolev type model, the direct sum of subspaces.
@article{JCEM_2015_2_3_a5,
     author = {D. E. Shafranov},
     title = {The splitting of the domain of the definition of the elliptic self-adjoint pseudodifferential operator},
     journal = {Journal of computational and engineering mathematics},
     pages = {60--64},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2015_2_3_a5/}
}
TY  - JOUR
AU  - D. E. Shafranov
TI  - The splitting of the domain of the definition of the elliptic self-adjoint pseudodifferential operator
JO  - Journal of computational and engineering mathematics
PY  - 2015
SP  - 60
EP  - 64
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2015_2_3_a5/
LA  - en
ID  - JCEM_2015_2_3_a5
ER  - 
%0 Journal Article
%A D. E. Shafranov
%T The splitting of the domain of the definition of the elliptic self-adjoint pseudodifferential operator
%J Journal of computational and engineering mathematics
%D 2015
%P 60-64
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2015_2_3_a5/
%G en
%F JCEM_2015_2_3_a5
D. E. Shafranov. The splitting of the domain of the definition of the elliptic self-adjoint pseudodifferential operator. Journal of computational and engineering mathematics, Tome 2 (2015) no. 3, pp. 60-64. http://geodesic.mathdoc.fr/item/JCEM_2015_2_3_a5/