@article{JCEM_2015_2_3_a5,
author = {D. E. Shafranov},
title = {The splitting of the domain of the definition of the elliptic self-adjoint pseudodifferential operator},
journal = {Journal of computational and engineering mathematics},
pages = {60--64},
year = {2015},
volume = {2},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JCEM_2015_2_3_a5/}
}
TY - JOUR AU - D. E. Shafranov TI - The splitting of the domain of the definition of the elliptic self-adjoint pseudodifferential operator JO - Journal of computational and engineering mathematics PY - 2015 SP - 60 EP - 64 VL - 2 IS - 3 UR - http://geodesic.mathdoc.fr/item/JCEM_2015_2_3_a5/ LA - en ID - JCEM_2015_2_3_a5 ER -
%0 Journal Article %A D. E. Shafranov %T The splitting of the domain of the definition of the elliptic self-adjoint pseudodifferential operator %J Journal of computational and engineering mathematics %D 2015 %P 60-64 %V 2 %N 3 %U http://geodesic.mathdoc.fr/item/JCEM_2015_2_3_a5/ %G en %F JCEM_2015_2_3_a5
D. E. Shafranov. The splitting of the domain of the definition of the elliptic self-adjoint pseudodifferential operator. Journal of computational and engineering mathematics, Tome 2 (2015) no. 3, pp. 60-64. http://geodesic.mathdoc.fr/item/JCEM_2015_2_3_a5/
[1] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003, 216 pp. | MR | Zbl
[2] G. A. Sviridyuk, S. A. Zagrebina, “Nonclassical Mathematical Physics Models”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2012, no. 40 (299), 7–18 | Zbl
[3] F. W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Springer, New York, 1983, 278 pp. | MR | Zbl
[4] D. E. Shafranov, A. I. Shvedchikova, “The Hoff Equation as a Model of Elastic Shell”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2012, no. 18 (277), 77–81 | Zbl
[5] D. E. Shafranov, “One Sobolev Type Model in the Space of Differential $k$-forms on the Sphere”, SUSU Science, Proceedings of 66th Scientific Conference of the Section of Natural Sciences (Chelyabinsk, 2014), Publishing center of SUSU, Chelyabinsk, 2014, 234–238