The splitting of the domain of the definition of the elliptic self-adjoint pseudodifferential operator
Journal of computational and engineering mathematics, Tome 2 (2015) no. 3, pp. 60-64
Voir la notice de l'article provenant de la source Math-Net.Ru
In this work we researched domain splitting of self-adjoint elliptic pseudodifferential operator. In particular the Laplace – Beltrami operator in the space of smooth differential k-forms defined on a smooth compact oriented Riemannian manifold without boundary be such operator. This result can be used in model with Sobolev type equations.
Keywords:
differential k-forms, Riemannian manifold, Sobolev type model, the direct sum of subspaces.
@article{JCEM_2015_2_3_a5,
author = {D. E. Shafranov},
title = {The splitting of the domain of the definition of the elliptic self-adjoint pseudodifferential operator},
journal = {Journal of computational and engineering mathematics},
pages = {60--64},
publisher = {mathdoc},
volume = {2},
number = {3},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JCEM_2015_2_3_a5/}
}
TY - JOUR AU - D. E. Shafranov TI - The splitting of the domain of the definition of the elliptic self-adjoint pseudodifferential operator JO - Journal of computational and engineering mathematics PY - 2015 SP - 60 EP - 64 VL - 2 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2015_2_3_a5/ LA - en ID - JCEM_2015_2_3_a5 ER -
%0 Journal Article %A D. E. Shafranov %T The splitting of the domain of the definition of the elliptic self-adjoint pseudodifferential operator %J Journal of computational and engineering mathematics %D 2015 %P 60-64 %V 2 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCEM_2015_2_3_a5/ %G en %F JCEM_2015_2_3_a5
D. E. Shafranov. The splitting of the domain of the definition of the elliptic self-adjoint pseudodifferential operator. Journal of computational and engineering mathematics, Tome 2 (2015) no. 3, pp. 60-64. http://geodesic.mathdoc.fr/item/JCEM_2015_2_3_a5/