On stochastic differential inclusions with current velocities
Journal of computational and engineering mathematics, Tome 2 (2015) no. 3, pp. 25-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

Existence of solution theorems are obtained for stochastic differential inclusions given in terms of the so-called current velocities (symmetric mean derivatives, a direct analogs of ordinary velocity of deterministic systems) and quadratic mean derivatives (giving information on the diffusion coefficient) on the flat n-dimensional torus. Right-hand sides in both the current velocity part and the quadratic part are set-valued but satisfy the conditions, under which they have smooth selectors. Then we can reduce the inclusion to an equation with current velocities for which existence of solutions is known in the case of smooth right-hand side.
Keywords: mean derivatives, current velocities, differential inclusions.
@article{JCEM_2015_2_3_a2,
     author = {Yu. E. Gliklikh and A. V. Makarova},
     title = {On stochastic differential inclusions with current velocities},
     journal = {Journal of computational and engineering mathematics},
     pages = {25--33},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2015_2_3_a2/}
}
TY  - JOUR
AU  - Yu. E. Gliklikh
AU  - A. V. Makarova
TI  - On stochastic differential inclusions with current velocities
JO  - Journal of computational and engineering mathematics
PY  - 2015
SP  - 25
EP  - 33
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2015_2_3_a2/
LA  - en
ID  - JCEM_2015_2_3_a2
ER  - 
%0 Journal Article
%A Yu. E. Gliklikh
%A A. V. Makarova
%T On stochastic differential inclusions with current velocities
%J Journal of computational and engineering mathematics
%D 2015
%P 25-33
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2015_2_3_a2/
%G en
%F JCEM_2015_2_3_a2
Yu. E. Gliklikh; A. V. Makarova. On stochastic differential inclusions with current velocities. Journal of computational and engineering mathematics, Tome 2 (2015) no. 3, pp. 25-33. http://geodesic.mathdoc.fr/item/JCEM_2015_2_3_a2/

[1] S. M. Aseev, “Suschestvovanie differentsiruemoi odnoznachnoi vetvi dlya mnogoznachnykh otobrazhenii”, Nekotorye voprosy prikladnoi matematiki i programmnogo obespecheniya EVM, Sbornik trudov konferentsii molodykh uchenykh fakulteta VMK (Moskva, 1982), MGU, M., 1982, 36–39

[2] S. V. Azarina, Yu. E. Gliklikh, “Differential inclusions with mean derivatives”, Dynamic systems and applications, 16 (2007), 49–72 | MR

[3] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, Komkniga, M., 2005, 213 pp.

[4] J. Cresson, S. Darses, “Stochastic Embedding of Dynamical Systems”, Journal of Mathematical Physics, 48 (2007), 072703, 54 pp. | DOI | MR | Zbl

[5] M. Sh. Farber, “O gladkikh selektorakh peresechenii mnogoznachnykh otobrazhenii”, Izvestiya Akademii nauk Azerbaidzhanskoi SSR, 1979, no. 6, 23–28 | MR | Zbl

[6] I. I. Gikhman, A. V. Skorokhod, Teoriya sluchainykh protsessov, Fizmatlit, M., 1971, 664 pp. | MR

[7] Yu. E. Gliklikh, Globalnyi i stokhasticheskii analiz v zadachakh matematicheskoi fiziki, Komkniga, M., 2005, 416 pp.

[8] E. Nelson, “Derivation of the Schrödinger Equation from Newtonian Mechanics”, Physical Reviews, 6 (1979), 1079–1085

[9] E. Nelson, Dynamical Theory of Brownian Motion, Princeton University Press, Princeton, 1967, 142 pp. | MR

[10] E. Nelson, Quantum Fluctuations, Princeton University Press, Princeton, 1985, 147 pp. | MR | Zbl

[11] K. R. Partasarati, Vvedenie v teoriyu veroyatnostei i teoriyu mery, Mir, M., 1988, 344 pp. | MR

[12] D. P. Zhelobenko, Kompaktnye gruppy Li i ikh predstavleniya, Fizmatlit, M., 1970, 674 pp. | MR