Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2015_2_2_a7, author = {A. A. Zamyshlyaeva and A. V. Lut}, title = {Boussinesq -- {L\"ove} mathematical model on a geometrical graph}, journal = {Journal of computational and engineering mathematics}, pages = {82--97}, publisher = {mathdoc}, volume = {2}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2015_2_2_a7/} }
TY - JOUR AU - A. A. Zamyshlyaeva AU - A. V. Lut TI - Boussinesq -- Löve mathematical model on a geometrical graph JO - Journal of computational and engineering mathematics PY - 2015 SP - 82 EP - 97 VL - 2 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2015_2_2_a7/ LA - en ID - JCEM_2015_2_2_a7 ER -
A. A. Zamyshlyaeva; A. V. Lut. Boussinesq -- Löve mathematical model on a geometrical graph. Journal of computational and engineering mathematics, Tome 2 (2015) no. 2, pp. 82-97. http://geodesic.mathdoc.fr/item/JCEM_2015_2_2_a7/
[1] A. E. H. Love, Treatise on the Mathematical Theory of Elasticity, Univ. Press, Cambridge, 1927, 648 pp. | Zbl
[2] A. A. Zamyshlyaeva, “Fazovye prostranstva odnogo klassa lineinykh uravnenii sobolevskogo tipa vtorogo poryadka”, Vychislitelnye tekhnologii, 8:4 (2003), 45–54 | Zbl
[3] A. A. Zamyshlyaeva, A. V. Yuzeeva, “Nachalno-konechnaya zadacha dlya uravneniya Bussineska–Lyava”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2010, no. 5, 23–31 | Zbl
[4] A. A. Zamyshlyaeva, O. N. Tsyplenkova, “Optimalnoe upravlenie resheniyami nachalno-konechnoi zadachi dlya uravneniya Bussineska–Lyava”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2012, no. 11, 13–24 | Zbl
[5] A. A. Zamyshlyaeva, O. Tsyplenkova, “Optimal Control of Solutions of the Showalter - Sidorov - Dirichlet Problem for the Boussinesq – Löve Equation”, Differential Equations, 49:11 (2013), 1356–1365 | DOI | DOI | MR | Zbl
[6] A. A. Zamyshlyaeva, E. V. Bychkov, “Fazovoe prostranstvo modifitsirovannogo uravneniya Bussineska”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2012, no. 12, 13–19 | Zbl
[7] A. A. Zamyshlyaeva, “Ob algoritme chislennogo modelirovaniya voln Bussineska–Lyava”, Vestn. YuUrGU. Ser. Kompyuternye tekhnologii, upravlenie, radioelektronika, 13:4 (2013), 24–29
[8] Yu. V. Pokornyi, O. M. Penkin, V. L. Pryadiev, A. V. Borovskikh, K. P. Lazarev, S. A. Shabrov, Differentsialnye uravneniya na geometricheskikh grafakh, FIZMATLIT, M., 2005, 272 pp. | MR
[9] G. A. Sviridyuk, V. V. Shemetova, “The phase space of a nonclassical model”, Russian Math. (Iz. VUZ), 49:11 (2005), 44–49 | MR
[10] G. A. Sviridyuk, A. A. Bayazitova, “O pryamoi i obratnoi zadachakh dlya uravnenii Khoffa na grafe”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 118, 2009, 6–17 | DOI
[11] A. A. Bayazitova, “Zadacha Shturma–Liuvillya na geometricheskom grafe”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2010, no. 5, 4–10 | Zbl