Existence of solutions in quasi-Banach spaces for evolutionary Sobolev type equations in relatively radial case
Journal of computational and engineering mathematics, Tome 2 (2015) no. 2, pp. 71-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sobolev-type equations (equations not solved for the highest derivative) probably first appeared in the late nineteenth century. The growing recent interest in Sobolev-type equations motivates us to consider them in quasi-Banach spaces. Specifically, this study aims at understanding non-classical models of mathematical physics in quasi-Banach spaces. This paper carries over the theory of degenerate strongly continuous semigroups obtained earlier in Banach spaces to quasi-Banach spaces. We prove an analogue of the direct Hille – Yosida – Feller – Miyadera – Phillips theorem. As an application of abstract results, we consider the Showalter – Sidorov problem for modified linear Chen – Gurtin equations in quasi-Sobolev spaces.
Keywords: degenerate strong continuous semigroups, quasi-Banach spaces, Hille – Iosida – Feller – Miadera – Phillips theorem, modified Chen – Gurtin equation, quasi-Sobolev spaces.
@article{JCEM_2015_2_2_a6,
     author = {M. A. Sagadeeva and A. S. Rashid},
     title = {Existence of solutions in {quasi-Banach} spaces for evolutionary {Sobolev} type equations in relatively radial case},
     journal = {Journal of computational and engineering mathematics},
     pages = {71--81},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2015_2_2_a6/}
}
TY  - JOUR
AU  - M. A. Sagadeeva
AU  - A. S. Rashid
TI  - Existence of solutions in quasi-Banach spaces for evolutionary Sobolev type equations in relatively radial case
JO  - Journal of computational and engineering mathematics
PY  - 2015
SP  - 71
EP  - 81
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2015_2_2_a6/
LA  - en
ID  - JCEM_2015_2_2_a6
ER  - 
%0 Journal Article
%A M. A. Sagadeeva
%A A. S. Rashid
%T Existence of solutions in quasi-Banach spaces for evolutionary Sobolev type equations in relatively radial case
%J Journal of computational and engineering mathematics
%D 2015
%P 71-81
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2015_2_2_a6/
%G en
%F JCEM_2015_2_2_a6
M. A. Sagadeeva; A. S. Rashid. Existence of solutions in quasi-Banach spaces for evolutionary Sobolev type equations in relatively radial case. Journal of computational and engineering mathematics, Tome 2 (2015) no. 2, pp. 71-81. http://geodesic.mathdoc.fr/item/JCEM_2015_2_2_a6/

[1] E. Hille, R. S. Phillips, Functional Analysis and Semi-Groups, AMS, Providence, 1957, xii+808 pp. | MR

[2] G. A. Sviridyuk, V. E. Fedorov, “Polugruppy operatorov s yadrami”, Vestnik Chelyabinskogo gosudarstvennogo universiteta. Seriya 3. Matematika. Mekhanika. Informatika, 2002, no. 1 (6), 42–70 | MR | Zbl

[3] K. Yosida, Functional analysis, Springer-Verlag, Berlin-Gottingen-Heidelberg, 1965, xi+458 pp. | MR | Zbl

[4] G. A. Sviridyuk, “Lineinye uravneniya tipa Soboleva i silno nepreryvnye polugruppy razreshayuschikh operatorov s yadrami”, Doklady Akademii nauk, 337:5 (1994), 581–584 ; G. A. Sviridyuk, “Sobolev Type Linear Equations and Strongly Continuous Semigroups of Resolving Operators with Kernels”, Russian Acad. Sci. Dokl. Math., 50:1 (1995), 137–142 | MR | Zbl

[5] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003, 216 pp. | MR | Zbl

[6] V. E. Fedorov, “Silno nepreryvnye polugruppy dlya uravnenii sobolevskogo tipa v lokalno vypuklykh prostranstvakh”, Neklassicheskie uravneniya matematicheskoi fiziki, Trudy konferentsii (Novosibirsk, 2000), Izd-vo IM SO RAN, Novosibirsk, 2000, 32–40 | Zbl

[7] G. V. Demidenko, S. V. Uspenskii, Partial Differential Equations and Systems not Solvable with Respect to the Highest-order Derivative, Marcel Dekker Inc., New York-Basel-Hong Kong, 2003, xvi+490 pp. | MR | Zbl

[8] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniya sobolevskogo tipa, FIZMATLIT, M., 2007, 736 pp.

[9] A. A. Zamyshlyaeva, Lineinye uravneniya sobolevskogo tipa vysokogo poryadka, Izd. tsentr YuUrGU, Chelyabinsk, 2012, 107 pp. | MR

[10] N. A. Manakova, Zadachi optimalnogo upravleniya dlya polulineinykh uravnenii sobolevskogo tipa, Izd. tsentr YuUrGU, Chelyabinsk, 2012, 139 pp. | MR

[11] M. A. Sagadeeva, Dikhotomii reshenii lineinykh uravnenii sobolevskogo tipa, Izd. tsentr YuUrGU, Chelyabinsk, 2012, 139 pp. | MR

[12] G. A. Sviridyuk, S. A. Zagrebina, “Neklassicheskie modeli matematicheskoi fiziki”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2012, no. 14, 7–18 | Zbl

[13] Dzh. K. Al-Delfi, “Kvazisobolevy prostranstva $l_p^m$”, Vestnik YuUrGU. Seriya: Matematika. Mekhanika. Fizika, 5:1 (2013), 107–109

[14] G. A. Sviridyuk, “Mnogoobraziya reshenii odnogo klassa evolyutsionnykh i dinamicheskikh uravnenii”, Doklady Akademii nauk SSSR, 304:2 (1989), 301–304 | MR | Zbl

[15] A. V. Keller, Dzh. K. Al-Delfi, “Golomorfnye vyrozhdennye gruppy operatorov v kvazibanakhovykh prostranstvakh”, Vestnik YuUrGU. Seriya: Matematika. Mekhanika. Fizika, 7:1 (2015), 20–27 | Zbl

[16] G. A. Sviridyuk, N. A. Manakova, “An optimal control of the solutions of the initial-final problem for linear Sobolev type equations with strongly relatively $p$-radial operator”, Semigroups of operators – theory and applications, Proc. Int. Conference (Bedlewo, Poland, October 2013), Springer Proc. Math. Stat., 113, Springer, Cham, 2015, 213–224 | DOI | MR | Zbl

[17] G. A. Sviridyuk, S. A. Zagrebina, “Zadacha Shouoltera–Sidorova kak fenomen uravnenii sobolevskogo tipa”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya: Matematika, 3:1 (2010), 104–125 | MR | Zbl

[18] M. A. Sagadeeva, A. N. Shulepov, “Apppoksimatsii vyrozhdennykh $C_0$-polugrupp”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 6:2 (2013), 133–137 | Zbl