Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2015_2_2_a2, author = {V. L. Dilman and D. A. Trunova}, title = {Research into functional equations arising from mathematical modeling of critical states of heterogeneous soft layers}, journal = {Journal of computational and engineering mathematics}, pages = {19--24}, publisher = {mathdoc}, volume = {2}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2015_2_2_a2/} }
TY - JOUR AU - V. L. Dilman AU - D. A. Trunova TI - Research into functional equations arising from mathematical modeling of critical states of heterogeneous soft layers JO - Journal of computational and engineering mathematics PY - 2015 SP - 19 EP - 24 VL - 2 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2015_2_2_a2/ LA - en ID - JCEM_2015_2_2_a2 ER -
%0 Journal Article %A V. L. Dilman %A D. A. Trunova %T Research into functional equations arising from mathematical modeling of critical states of heterogeneous soft layers %J Journal of computational and engineering mathematics %D 2015 %P 19-24 %V 2 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCEM_2015_2_2_a2/ %G en %F JCEM_2015_2_2_a2
V. L. Dilman; D. A. Trunova. Research into functional equations arising from mathematical modeling of critical states of heterogeneous soft layers. Journal of computational and engineering mathematics, Tome 2 (2015) no. 2, pp. 19-24. http://geodesic.mathdoc.fr/item/JCEM_2015_2_2_a2/
[1] V. L. Dilman, T. V. Eroshkina, Mathematical Modelling of Critical States of the Soft Layers in Heterogeneous Joints, Publishing Center of South Ural State University, Chelyabinsk, 2011
[2] V. L. Dilman, Mathematical Models of the Stress State of Heterogeneous Thin-walled Cylindrical Shells, Publishing Center of South Ural State University, Chelyabinsk, 2007
[3] V. L. Dilman, A. A. Ostsemin, “Stress State and Static Strength of the Plastic Interlayer in Plane Deformation”, Journal of Machinery Manufacture and Reliability, 2005, no. 4, 38–48
[4] V. L. Dilman, A. A. Ostsemin, “On the Stress-deformed State at the Tension of the Plastic Layer with Two Axes of Symmetry”, Mechanics of Solids, 2001, no. 6, 115–124
[5] V. L. Dilman, A. A. Nosachova, “Mathematical Simulation of Critical States of the Plastic Layer”, Tambov University Reports. Series: Natural and Technical Sciences, 18:5-2 (2013), 2502–2504
[6] V. L. Dilman, “The Stress State of the Plastic Layer with Variable Strength Broadwise”, Mechanics of Solids, 2000, no. 1, 141–148
[7] V. L. Dilman, “Investigation of analytical methods of mathematical models of the stress state of thin-walled non-uniform cylindrical shells”, Vestnik of SUSU. Series: Mathematical modeling and programming, 2009, no. 17 (150), 36–58 | Zbl
[8] V. L. Dilman, D. A. Trunova, “Mathematical Modeling of the Critical Sates of a Heterogeneous Plastic Rectangle at Plane Deformation”, Bulletin of the Magnitogorsk State University. Mathematics, 2012, no. 14, 46–55
[9] V. L. Dilman, D. A. Trunova, “Mathematical Modelling of the Critical States of the Heterogeneous Layer Under Different Conditions of Heterogeneity”, Molodoy Issledovatel' - Materialy 66-y Studencheskoy Nauchnoy Konferentsii, Publishing center of SUSU, Chelyabinsk, 2013, 166–171
[10] V. L. Dilman, D. A. Trunova, “The Stress State of a Rectangular Plastic Layer with the Function of Heterogeneity Depending on Two Variables”, Yuzhno-Uralskaya Molodezhnaya Shkola po Matematicheskomu Modelirovaniyu (Chelyabinsk, 29-30 May), Publishing center of SUSU, Chelyabinsk, 2014, 144–151