Mots-clés : quasi-Banach spaces, quasi-Sobolev spaces
@article{JCEM_2015_2_1_a5,
author = {A. V. Keller and A. A. Zamyshlyaeva and M. A. Sagadeeva},
title = {On integration in {quasi-Banach} spaces of sequences},
journal = {Journal of computational and engineering mathematics},
pages = {52--56},
year = {2015},
volume = {2},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JCEM_2015_2_1_a5/}
}
TY - JOUR AU - A. V. Keller AU - A. A. Zamyshlyaeva AU - M. A. Sagadeeva TI - On integration in quasi-Banach spaces of sequences JO - Journal of computational and engineering mathematics PY - 2015 SP - 52 EP - 56 VL - 2 IS - 1 UR - http://geodesic.mathdoc.fr/item/JCEM_2015_2_1_a5/ LA - en ID - JCEM_2015_2_1_a5 ER -
A. V. Keller; A. A. Zamyshlyaeva; M. A. Sagadeeva. On integration in quasi-Banach spaces of sequences. Journal of computational and engineering mathematics, Tome 2 (2015) no. 1, pp. 52-56. http://geodesic.mathdoc.fr/item/JCEM_2015_2_1_a5/
[1] A. B. Aleksandrov, Kvazinormirovannye prostranstva v kompleksnom analize, diss. ... dokt. fiz.-mat. nauk, Leningrad, 1983, 267 pp.
[2] N. J. Kalton, “Quasi-Banach spaces”, Handbook of the Geometry of Banach Spaces, v. 2, 2003, 1099–1130 | DOI | MR | Zbl
[3] Ye. V. Galperin, S. Samarah, “Time-frequency analysis on modulation spaces $M_m^{p,q}$, $0
,q\infty$”, Applied and Computational Harmonic Analysis, 16:1 (2004) | DOI | MR | Zbl[4] H. Rauhut, “Wiener Amalgam Spaces with Respect to Quasi-Banach Spaces”, Colloquium Mathematicum, 109:2 (2005) | DOI | MR
[5] S. M. Vovk, V. F. Borulko, “Statement of a problem of definition of linear signals parameters in quasinormed space”, Radioelectronics and Communications Systems, 53:7 (2010), 367–375.\ | DOI
[6] A. V. Keller, Dzh. K. Al-Delfi, “Golomorfnye vyrozhdennye gruppy operatorov v kvazibanakhovykh prostranstvakh”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 7:1 (2015), 20–27 | Zbl
[7] J. Bergh, J. L$\ddot{\rm o}$fstr$\ddot{\rm o}$m, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin, Heidelberg, New York, 1976, 207 pp. | MR | Zbl
[8] S. Rolewicz, Metric Linear Spaces, PWN, Warsaw, 1985, 476 pp. | MR | Zbl