On integration in quasi-Banach spaces of sequences
Journal of computational and engineering mathematics, Tome 2 (2015) no. 1, pp. 52-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

Since a quasi-Banach space of sequences named quasi-Sobolev space is not locally convex it is not possible to speak about integrability of each continuous function. The main aim of this work is to get conditions sufficient for existence of Riemann integral for the function with values in such space. We use the properties of metrizability and local pseudoconvexivity of the space to show the existence of integral for an analytic function. Besides the introduction and bibliography, the article includes two sections. In the first section the mentioned properties of quasi-Banach spaces are discussed. In the second section we obtain the conditions for integration of function with values in quasi-Banach spaces of sequences.
Keywords: quasi-Banach spaces, quasi-Sobolev spaces, analytic vector-function, Riemann integral.
@article{JCEM_2015_2_1_a5,
     author = {A. V. Keller and A. A. Zamyshlyaeva and M. A. Sagadeeva},
     title = {On integration in {quasi-Banach} spaces of sequences},
     journal = {Journal of computational and engineering mathematics},
     pages = {52--56},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2015_2_1_a5/}
}
TY  - JOUR
AU  - A. V. Keller
AU  - A. A. Zamyshlyaeva
AU  - M. A. Sagadeeva
TI  - On integration in quasi-Banach spaces of sequences
JO  - Journal of computational and engineering mathematics
PY  - 2015
SP  - 52
EP  - 56
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2015_2_1_a5/
LA  - en
ID  - JCEM_2015_2_1_a5
ER  - 
%0 Journal Article
%A A. V. Keller
%A A. A. Zamyshlyaeva
%A M. A. Sagadeeva
%T On integration in quasi-Banach spaces of sequences
%J Journal of computational and engineering mathematics
%D 2015
%P 52-56
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2015_2_1_a5/
%G en
%F JCEM_2015_2_1_a5
A. V. Keller; A. A. Zamyshlyaeva; M. A. Sagadeeva. On integration in quasi-Banach spaces of sequences. Journal of computational and engineering mathematics, Tome 2 (2015) no. 1, pp. 52-56. http://geodesic.mathdoc.fr/item/JCEM_2015_2_1_a5/

[1] A. B. Aleksandrov, Kvazinormirovannye prostranstva v kompleksnom analize, diss. ... dokt. fiz.-mat. nauk, Leningrad, 1983, 267 pp.

[2] N. J. Kalton, “Quasi-Banach spaces”, Handbook of the Geometry of Banach Spaces, v. 2, 2003, 1099–1130 | DOI | MR | Zbl

[3] Ye. V. Galperin, S. Samarah, “Time-frequency analysis on modulation spaces $M_m^{p,q}$, $0

,q\infty$”, Applied and Computational Harmonic Analysis, 16:1 (2004) | DOI | MR | Zbl

[4] H. Rauhut, “Wiener Amalgam Spaces with Respect to Quasi-Banach Spaces”, Colloquium Mathematicum, 109:2 (2005) | DOI | MR

[5] S. M. Vovk, V. F. Borulko, “Statement of a problem of definition of linear signals parameters in quasinormed space”, Radioelectronics and Communications Systems, 53:7 (2010), 367–375.\ | DOI

[6] A. V. Keller, Dzh. K. Al-Delfi, “Golomorfnye vyrozhdennye gruppy operatorov v kvazibanakhovykh prostranstvakh”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 7:1 (2015), 20–27 | Zbl

[7] J. Bergh, J. L$\ddot{\rm o}$fstr$\ddot{\rm o}$m, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin, Heidelberg, New York, 1976, 207 pp. | MR | Zbl

[8] S. Rolewicz, Metric Linear Spaces, PWN, Warsaw, 1985, 476 pp. | MR | Zbl