Numerical modeling of quasi-steady process in conducting nondispersive medium with relaxation
Journal of computational and engineering mathematics, Tome 2 (2015) no. 1, pp. 45-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions of existence and uniqueness of weak generalized solution to the Dirichlet – Cauchy problem for equation modeling a quasi-steady process in conducting nondispersive medium with relaxation are obtained. The main equation of the model is considered as a representative of the class of quasi-linear equations of Sobolev type. It enables to prove a solvability of the Dirichlet – Cauchy problem in a weak generalized meaning by methods developed for this class of equations. In suitable functional spaces the Dirichlet – Cauchy problem is reduced to the Cauchy problem for abstract quasi-linear operator differential equation of the special form. Algorithm of numerical solution to the Dirichlet – Cauchy problem based on the Galerkin method is developed. Results of computational experiment are provided.
Keywords: Galerkin method, quasi-linear Sobolev type equation, weak generalized solution, numerical modeling.
@article{JCEM_2015_2_1_a4,
     author = {E. A. Bogatyreva},
     title = {Numerical modeling of quasi-steady process in conducting nondispersive medium with relaxation},
     journal = {Journal of computational and engineering mathematics},
     pages = {45--51},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2015_2_1_a4/}
}
TY  - JOUR
AU  - E. A. Bogatyreva
TI  - Numerical modeling of quasi-steady process in conducting nondispersive medium with relaxation
JO  - Journal of computational and engineering mathematics
PY  - 2015
SP  - 45
EP  - 51
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2015_2_1_a4/
LA  - en
ID  - JCEM_2015_2_1_a4
ER  - 
%0 Journal Article
%A E. A. Bogatyreva
%T Numerical modeling of quasi-steady process in conducting nondispersive medium with relaxation
%J Journal of computational and engineering mathematics
%D 2015
%P 45-51
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2015_2_1_a4/
%G en
%F JCEM_2015_2_1_a4
E. A. Bogatyreva. Numerical modeling of quasi-steady process in conducting nondispersive medium with relaxation. Journal of computational and engineering mathematics, Tome 2 (2015) no. 1, pp. 45-51. http://geodesic.mathdoc.fr/item/JCEM_2015_2_1_a4/

[1] M. O. Korpusov, Yu. D. Pletner, A. G. Sveshnikov, “On quasi-steady processes in conducting nondispersive media”, Zh. Vychisl. Mat. Mat. Fiz., 40:8 (2000), 1188–1199 | MR | Zbl

[2] M. O. Korpusov, “Blow-up of a solution of a pseudoparabolic equation with the time derivative of a nonlinear elliptic operator”, Comput. Math. Math. Phys., 42:12 (2002), 1717–1724 | MR | Zbl

[3] S. A. Zagrebina, M. A. Sagadeeva, “Obobschennaya zadacha Shouoltera-Sidorova dlya uravnenii sobolevskogo tipa s silno $(L,p)$-radialnym operatorom”, Vestnik MaGU. Matematika, 2006, no. 9, 17–27, MaGU, Magnitogorsk | Zbl

[4] A. A. Zamyshlyaeva, “Fazovoe prostranstvo uravneniya sobolevskogo tipa vysokogo poryadka”, Izv. Irkutskogo gos. un-ta. Ser. Matematika, 4:4 (2011), 45–57 | Zbl

[5] G. A. Sviridyuk, N. A. Manakova, “Dinamicheskie modeli sobolevskogo tipa s usloviem Shouoltera–Sidorova i additivnymi «shumami»”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 7:1 (2014), 90–103 | DOI | Zbl

[6] G. A. Sviridyuk, S. A. Zagrebina, “Verigin's Problem for Linear Equations of the Sobolev Type with Relatively $p$-Sectorial Operators”, Differ. Equ., 38:12 (2002), 1745–1752 | DOI | MR | Zbl

[7] G. A. Sviridyuk, A. V. Keller, “Invariant spaces and dichotomies of solutions of a class of linear equations of the Sobolev type”, Russian Math. (Iz. VUZ), 41:5 (1997), 57–65 | MR | Zbl

[8] E. A. Bogatyreva, I. N. Semenova, “On the uniqueness of a nonlocal solution in the Barenblatt–Gilman model”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:4 (2014), 113–119 | DOI | Zbl

[9] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Nelineinyi funktsionalnyi analiz i ego prilozheniya k uravneniyam v chastnykh proizvodnykh, Nauch. mir, Moskva, 2008, 399 pp.