Problem of hard and optimal control of solutions to the initial-final problem for nonstationary Sobolev type equation
Journal of computational and engineering mathematics, Tome 2 (2015) no. 1, pp. 39-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main aim of this work is solving the problem of hard and optimal control of solution to the initial-finial problem for nonstationary Sobolev type equation. We construct a solution to the initial-final problem for the nonstationary equation and show that a unique optimal control of solutions to this problem exists. Apart from the introduction and bibliography, the article consists of three sections. The first section provides the essentials of the theory of relatively $p$-bounded operators. In the second section we construct a strong solution to the initial-final problem for nonstationary Sobolev-type equations. The third section contains our proof that there exists a unique optimal control of solutions to the initial-final problem.
Keywords: optimal control, initial-final problem, Sobolev-type equations, relatively bounded operator.
@article{JCEM_2015_2_1_a3,
     author = {A. D. Badoyan},
     title = {Problem of hard and optimal control of solutions to the initial-final problem for nonstationary {Sobolev} type equation},
     journal = {Journal of computational and engineering mathematics},
     pages = {39--44},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2015_2_1_a3/}
}
TY  - JOUR
AU  - A. D. Badoyan
TI  - Problem of hard and optimal control of solutions to the initial-final problem for nonstationary Sobolev type equation
JO  - Journal of computational and engineering mathematics
PY  - 2015
SP  - 39
EP  - 44
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2015_2_1_a3/
LA  - en
ID  - JCEM_2015_2_1_a3
ER  - 
%0 Journal Article
%A A. D. Badoyan
%T Problem of hard and optimal control of solutions to the initial-final problem for nonstationary Sobolev type equation
%J Journal of computational and engineering mathematics
%D 2015
%P 39-44
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2015_2_1_a3/
%G en
%F JCEM_2015_2_1_a3
A. D. Badoyan. Problem of hard and optimal control of solutions to the initial-final problem for nonstationary Sobolev type equation. Journal of computational and engineering mathematics, Tome 2 (2015) no. 1, pp. 39-44. http://geodesic.mathdoc.fr/item/JCEM_2015_2_1_a3/

[1] A. Favini, A. Yagi, Degenerate Differential Equations in Banach Spaces, Marcel Dekker Inc., N.Y.–Basel–Hong Kong, 1999, xii+313 pp. | MR | Zbl

[2] G. V. Demidenko, S. V. Uspenskii, Partial Differential Equations and Systems not Solvable with Respect to the Highest-order Derivative, Marcel Dekker Inc., New York-Basel-Hong Kong, 2003, xvi+490 pp. | MR | Zbl

[3] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003, viii+216 pp. | MR | Zbl

[4] A. B. Al’shin, M. O. Korpusov, A. G. Sveshnikov, Blow-up in Nonlinear Sobolev Type Equations, De Gruyter Series in Nonlinear Analysis and Applications, 15, de Gruyter, Berlin, 2011, xii+648 pp. | MR | Zbl

[5] S. A. Zagrebina, “Nachalno-konechnye zadachi dlya neklassicheskikh modelei matematicheskoi fiziki”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 6:2 (2013), 5–24 | Zbl

[6] M. A. Sagadeeva, A. D. Badoyan, “Optimal control of solutions to the multipoint initial-final problem for nonstationary relatively bounded equations of Sobolev type”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:3 (2014), 128–134 | DOI | Zbl

[7] S. Zagrebina, M. Sagadeeva, “The Generalized Splitting Theorem for Linear Sobolev type Equations in Relatively Radial Case”, IIGU Ser. Matematika, 7 (2014), 19–33 | Zbl

[8] A. V. Keller, M. A. Sagadeeva, “Chislennoe reshenie zadach optimalnogo i zhestkogo upravleniya dlya odnoi nestatsionarnoi sistemy leontevskogo tipa”, Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Matematika. Fizika, 32:19 (2013), 57–66