Optimal control of solutions to Cauchy problem for Sobolev type equation of higher order
Journal of computational and engineering mathematics, Tome 1 (2014) no. 2, pp. 62-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

An optimal control problem for the higher order Sobolev type equation with a relatively polynomially bounded operator pencil is considered. The existence and uniqueness of a strong solution to the Cauchy problem for this equation are proved. Sufficient conditions for the existence and uniqueness of an optimal control of such solutions are obtained.
Keywords: Sobolev-type equations, relatively polynomially bounded operator pencil, strong solutions, optimal control.
@article{JCEM_2014_1_2_a6,
     author = {O. Tsyplenkova},
     title = {Optimal control of solutions to {Cauchy} problem for {Sobolev} type equation of higher order},
     journal = {Journal of computational and engineering mathematics},
     pages = {62--67},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2014_1_2_a6/}
}
TY  - JOUR
AU  - O. Tsyplenkova
TI  - Optimal control of solutions to Cauchy problem for Sobolev type equation of higher order
JO  - Journal of computational and engineering mathematics
PY  - 2014
SP  - 62
EP  - 67
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2014_1_2_a6/
LA  - en
ID  - JCEM_2014_1_2_a6
ER  - 
%0 Journal Article
%A O. Tsyplenkova
%T Optimal control of solutions to Cauchy problem for Sobolev type equation of higher order
%J Journal of computational and engineering mathematics
%D 2014
%P 62-67
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2014_1_2_a6/
%G en
%F JCEM_2014_1_2_a6
O. Tsyplenkova. Optimal control of solutions to Cauchy problem for Sobolev type equation of higher order. Journal of computational and engineering mathematics, Tome 1 (2014) no. 2, pp. 62-67. http://geodesic.mathdoc.fr/item/JCEM_2014_1_2_a6/

[1] G. A. Sviridyuk, A. A. Efremov, “Optimal Control of Sobolev-Type Linear Equations with Relatively p-sectorial Operators”, Differ. Uravn., 31:11 (1995), 1912–1919 | MR | Zbl

[2] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003, viii+216 pp. | MR | Zbl

[3] N. A. Manakova, A. G. Dylkov, “Optimal Control of the Solutions of the Initial-Finish Problem for the Linear Hoff Model”, Math. Notes, 94:2 (2013), 220–230 | DOI | DOI | MR | Zbl

[4] A. V. Keller, M. A. Sagadeeva, “Chislennoe reshenie zadach optimalnogo i zhestkogo upravleniya dlya odnoi nestatsionarnoi sistemy leontevskogo tipa”, Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Matematika. Fizika, 32:19 (2013), 57–66

[5] O. A. Ruzakova, E. A. Oleinik, “Ob upravlyaemosti lineinykh uravnenii sobolevskogo tipa s otnositelno sektorialnym operatorom”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2012, no. 11, 54–61 | Zbl

[6] Balachandran K., Dauer J.P., “Controllability of Sobolev-Type Integro-differential Systems in Banach Spaces”, Journal of Mathematical Analysis and Applications, 217:2 (1998), 335–348 | DOI | MR | Zbl

[7] A. A. Zamyshlyaeva, “Matematicheskie modeli sobolevskogo tipa vysokogo poryadka”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 7:2 (2014), 5–28 | DOI | Zbl

[8] J.-L. Lions, Controle optimal de systemes gouvernes par des equations aux derivees partielles, Dunod de Gauthiers-Villars, Paris, 1968 | MR | Zbl