Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2014_1_1_a5, author = {A. A. Zamyshlyaeva}, title = {One nonclassical higher order mathematical model with additive "white noise"'}, journal = {Journal of computational and engineering mathematics}, pages = {55--68}, publisher = {mathdoc}, volume = {1}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2014_1_1_a5/} }
TY - JOUR AU - A. A. Zamyshlyaeva TI - One nonclassical higher order mathematical model with additive "white noise"' JO - Journal of computational and engineering mathematics PY - 2014 SP - 55 EP - 68 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2014_1_1_a5/ LA - en ID - JCEM_2014_1_1_a5 ER -
A. A. Zamyshlyaeva. One nonclassical higher order mathematical model with additive "white noise"'. Journal of computational and engineering mathematics, Tome 1 (2014) no. 1, pp. 55-68. http://geodesic.mathdoc.fr/item/JCEM_2014_1_1_a5/
[1] A. B. Al’shin, M. O. Korpusov, A. G. Sveshnikov, Blow-up in Nonlinear Sobolev Type Equations, De Gruyter Series in Nonlinear Analysis and Applications, 15, de Gruyter, Berlin, 2011, xii+648 pp. | MR | Zbl
[2] G. V. Demidenko, S. V. Uspenskii, Partial Differential Equations and Systems not Solvable with Respect to the Highest-order Derivative, Marcel Dekker Inc., New York–Basel–Hong Kong, 2003, xvi+490 pp. | MR | Zbl
[3] A. Favini, A. Yagi, Degenerate Differential Equations in Banach Spaces, Marcel Dekker, New York–Basel–Hong Kong, 1999, 336 pp. | MR | Zbl
[4] V. E. Fedorov, “On Some Correlations in the Theory of Degenerate Semigroups of Operators”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 2008, no. 15 (115), 89–99 | Zbl
[5] Yu. E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics, Springer, London, 2011 | DOI | MR | Zbl
[6] Yu. E. Gliklikh, “Investigation of Leontieff Type Equations with White Noise by the Methods of Mean Derivatives of Stochastic Processes”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 13, 24–34 | Zbl
[7] M. Kovács, S. Larsson, “Introduction to Stochastic Partial Differential Equations”, Processing of «New Directions in the Mathematical and Computer Sciences» (National Universities Commission, Abuja, Nigeria, October 8-12, 2007), Publications of the ICMCS, 4, 2008, 159–232 | Zbl
[8] A. I. Kozhanov, Boundary Problems for Odd Ordered Equations of Mathematical Physics, NGU, Novosibirsk, 1990, 132 pp. | MR
[9] L. D. Landau, E. M. Lifshits, Theoretical Phisics, v. VII, Elasticity Theory, Nauka Publ., Moscow, 1987, 248 pp. | MR
[10] I. V. Melnikova, A. I. Filinkov, M. A. Alshansky, “Abstract Stochastic Equations II. Solutions in Spaces of Abstract Stochastic Distributions”, Journal of Mathematical Sciences, 116:5 (2003), 3620–3656 | DOI | MR | Zbl
[11] A. L. Shestakov, A. V. Keller, E. I. Nazarova, “Numerical Solution of the Optimal Measurement Problem”, Automation and Remote Control, 73:1 (2012), 97–104 | DOI | MR | Zbl
[12] A. L. Shestakov, G. A. Sviridyuk, “On a New Conception of White Noise”, Obozrenie Prikladnoy i Promyshlennoy Matematiki, 19:2 (2012), 287–288
[13] A. L. Shestakov, G. A. Sviridyuk, “On the Measurement of the «White Noise»”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 13, 99–108 | Zbl
[14] A. L. Shestakov, G. A. Sviridyuk, “Optimal measurement of dynamically distorted signals”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 2011, no. 8, 70–75 | Zbl
[15] A. L. Shestakov, G. A. Sviridyuk, Yu. V. Hudyakov, “Dynamic Measurement in Spaces of «Noise»”, Bulletin of the South Ural State University. Series «Computer Technologies, Automatic Control Radioelectronics», 13:2 (2013), 4–11
[16] R. E. Showalter, Hilbert Space Methods for Partial Differential Equations, Pitman, London–San Francisco–Melbourne, 1977, 196 pp. | MR | Zbl
[17] N. Sidorov, B. Loginov, A. Sinithyn, M. Falaleev, Lyapunov-Shmidt Methods in Nonlinear Analysis and Applications, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002, xx+548 pp. | DOI | MR
[18] G. A. Sviridyuk, T. V. Apetova, “The Phase Spaces of Linear Dynamic Sobolev Type Equations”, Doklady Akademii Nauk, 330:6 (1993), 696–699 | MR | Zbl
[19] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003, viii+216 pp. | MR | Zbl
[20] G. A. Sviridyuk, O. V. Vakarina, “Linear Sobolev Type Equations of Higher Order”, Doklady Akademii Nauk, 393:3 (1998), 308–310 | MR
[21] G. A. Sviridyuk, A. A. Zamyshlyaeva, “The phase spaces of a class of linear higher-order Sobolev type equations”, Differ. Uravn., 42:2 (2006), 269–278 | DOI | MR | Zbl
[22] G. Uizem, Linear and Nonlinear Waves, Mir Publ., Moscow, 1977, 638 pp. | MR
[23] S. Wang, G. Chen, “Small Amplitude Solutions of the Generalized IMBq Equation”, Mathematical Analysis and Applications, 274:2 (2002), 846–866 | DOI | MR | Zbl
[24] A. A. Zamyshlyaeva, “Stochastic Incomplete Linear Sobolev Type High-Ordered Equations with Additive White Noise”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 14, 73–82 | MR | Zbl
[25] S. A. Zagrebina, E. A. Soldatova, “The linear Sobolev-type Equations With Relatively $p$-bounded Operators and Additive White Noise”, IIGU Ser. Matematika, 6:1 (2013), 20–34 | Zbl