An optimal control to solutions of the Showalter -- Sidorov problem for the Hoff model on the geometrical graph
Journal of computational and engineering mathematics, Tome 1 (2014) no. 1, pp. 26-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

A lot of initial-boundary value problems for the equations and the systems of equations which are not resolved with respect to time derivative are considered in the framework of abstract Sobolev type equations that make up the vast field of non-classical equations of mathematical physics. We are interested in the optimal control problem to solutions of the Showalter – Sidorov problem for the semilinear Sobolev type equation. In this research we demonstrate the appliance of the abstract scheme to the solution of optimal control problem for the Hoff equations on a graph. The physical sense of the optimal control problem lies in the fact that the construction of I-beams should assume the desired shape with minimal costs. This scheme is based on the Galerkin method, allowing carrying out computational experiments. The sufficient conditions for the existence of optimal control to solutions of the Showalter – Sidorov problem for the Hoff equation on the geometrical graph are found.
Keywords: Sobolev type equation, optimal control, the Showalter – Sidorov problem, the Hoff equation.
@article{JCEM_2014_1_1_a2,
     author = {N. A. Manakova},
     title = {An optimal control to solutions of the {Showalter} -- {Sidorov} problem for the {Hoff} model on the geometrical graph},
     journal = {Journal of computational and engineering mathematics},
     pages = {26--33},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2014_1_1_a2/}
}
TY  - JOUR
AU  - N. A. Manakova
TI  - An optimal control to solutions of the Showalter -- Sidorov problem for the Hoff model on the geometrical graph
JO  - Journal of computational and engineering mathematics
PY  - 2014
SP  - 26
EP  - 33
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2014_1_1_a2/
LA  - en
ID  - JCEM_2014_1_1_a2
ER  - 
%0 Journal Article
%A N. A. Manakova
%T An optimal control to solutions of the Showalter -- Sidorov problem for the Hoff model on the geometrical graph
%J Journal of computational and engineering mathematics
%D 2014
%P 26-33
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2014_1_1_a2/
%G en
%F JCEM_2014_1_1_a2
N. A. Manakova. An optimal control to solutions of the Showalter -- Sidorov problem for the Hoff model on the geometrical graph. Journal of computational and engineering mathematics, Tome 1 (2014) no. 1, pp. 26-33. http://geodesic.mathdoc.fr/item/JCEM_2014_1_1_a2/

[1] A. B. Al’shin, M. O. Korpusov, A. G. Sveshnikov, Blow-up in Nonlinear Sobolev Type Equations, De Gruyter Series in Nonlinear Analysis and Applications, 15, de Gruyter, Berlin, 2011, xii+648 pp. | MR | Zbl

[2] G. V. Demidenko, S. V. Uspenskii, Partial Differential Equations and Systems not Solvable with Respect to the Highest-order Derivative, Marcel Dekker Inc., New York–Basel–Hong Kong, 2003, xvi+490 pp. | MR | Zbl

[3] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003, viii+216 pp. | MR | Zbl

[4] G. A. Sviridyuk, A. A. Zamyshlyaeva, “The Phase Spaces of a Class of Linear Higher-Order Sobolev Type Equations”, Differ. Uravn., 42:2 (2006), 269–278 | DOI | MR | Zbl

[5] G. A. Sviridyuk, S. A. Zagrebina, “Verigin's Problem for Linear Equations of the Sobolev Type with Relatively $p$-Sectorial Operators”, Differ. Equ., 38:12 (2002), 1745–1752 | DOI | MR | Zbl

[6] N. J. Hoff, “Creep Buckling”, The Aeronautical Quarterly, 7:1 (1956), 1–20

[7] G. A. Sviridyuk, S. A. Zagrebina, “Zadacha Shouoltera–Sidorova kak fenomen uravnenii sobolevskogo tipa”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya: Matematika, 3:1 (2010), 104–125 | MR | Zbl

[8] A. A. Zamyshlyaeva, O. N. Tsyplenkova, “Optimal Control of Solutions of the Showalter–Sidorov–Dirichlet Problem for the Boussinesq–Löve Equation”, Differential Equations, 49:11 (2013), 1356–1365 | DOI | DOI | MR | Zbl

[9] N. A. Manakova, “Chislennoe issledovanie protsessov v modelyakh Khoffa”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2008, no. 2, 63–70 | Zbl

[10] G. A. Sviridyuk , N. A. Manakova, “An Optimal Control Problem for the Hoff Equation”, Journal of Applied and Industrial Mathematics, 1:2 (2007), 247–253 | DOI | MR

[11] A. L. Shestakov, A. V. Keller, E. I. Nazarova, “Numerical Solution of the Optimal Measurement Problem”, Automation and Remote Control, 73:1 (2012), 97–104 | DOI | MR | Zbl

[12] G. A. Sviridyuk, “A problem for the generalized Boussinesq filtration equation”, Soviet Math. (Iz. VUZ), 33:2 (1989), 62–73 | MR | Zbl

[13] J. L. Lyons, Quelques methodes de r'esolution des probl'emes aux limites nonlineaires, Dunod de Gauthiers-Villars, Paris, 1969 | MR

[14] N. A. Manakova, “Optimal Control Problem for the Oskolkov Nonlinear Filtration Equation”, Differential Equations, 43:9 (2007), 1213–1221 | DOI | MR | Zbl

[15] A. A. Bayazitova, “Chislennoe issledovanie protsessov v modelyakh Khoffa”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2011, no. 7, 4–9 | Zbl