Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2014_1_1_a2, author = {N. A. Manakova}, title = {An optimal control to solutions of the {Showalter} -- {Sidorov} problem for the {Hoff} model on the geometrical graph}, journal = {Journal of computational and engineering mathematics}, pages = {26--33}, publisher = {mathdoc}, volume = {1}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2014_1_1_a2/} }
TY - JOUR AU - N. A. Manakova TI - An optimal control to solutions of the Showalter -- Sidorov problem for the Hoff model on the geometrical graph JO - Journal of computational and engineering mathematics PY - 2014 SP - 26 EP - 33 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2014_1_1_a2/ LA - en ID - JCEM_2014_1_1_a2 ER -
%0 Journal Article %A N. A. Manakova %T An optimal control to solutions of the Showalter -- Sidorov problem for the Hoff model on the geometrical graph %J Journal of computational and engineering mathematics %D 2014 %P 26-33 %V 1 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCEM_2014_1_1_a2/ %G en %F JCEM_2014_1_1_a2
N. A. Manakova. An optimal control to solutions of the Showalter -- Sidorov problem for the Hoff model on the geometrical graph. Journal of computational and engineering mathematics, Tome 1 (2014) no. 1, pp. 26-33. http://geodesic.mathdoc.fr/item/JCEM_2014_1_1_a2/
[1] A. B. Al’shin, M. O. Korpusov, A. G. Sveshnikov, Blow-up in Nonlinear Sobolev Type Equations, De Gruyter Series in Nonlinear Analysis and Applications, 15, de Gruyter, Berlin, 2011, xii+648 pp. | MR | Zbl
[2] G. V. Demidenko, S. V. Uspenskii, Partial Differential Equations and Systems not Solvable with Respect to the Highest-order Derivative, Marcel Dekker Inc., New York–Basel–Hong Kong, 2003, xvi+490 pp. | MR | Zbl
[3] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003, viii+216 pp. | MR | Zbl
[4] G. A. Sviridyuk, A. A. Zamyshlyaeva, “The Phase Spaces of a Class of Linear Higher-Order Sobolev Type Equations”, Differ. Uravn., 42:2 (2006), 269–278 | DOI | MR | Zbl
[5] G. A. Sviridyuk, S. A. Zagrebina, “Verigin's Problem for Linear Equations of the Sobolev Type with Relatively $p$-Sectorial Operators”, Differ. Equ., 38:12 (2002), 1745–1752 | DOI | MR | Zbl
[6] N. J. Hoff, “Creep Buckling”, The Aeronautical Quarterly, 7:1 (1956), 1–20
[7] G. A. Sviridyuk, S. A. Zagrebina, “Zadacha Shouoltera–Sidorova kak fenomen uravnenii sobolevskogo tipa”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya: Matematika, 3:1 (2010), 104–125 | MR | Zbl
[8] A. A. Zamyshlyaeva, O. N. Tsyplenkova, “Optimal Control of Solutions of the Showalter–Sidorov–Dirichlet Problem for the Boussinesq–Löve Equation”, Differential Equations, 49:11 (2013), 1356–1365 | DOI | DOI | MR | Zbl
[9] N. A. Manakova, “Chislennoe issledovanie protsessov v modelyakh Khoffa”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2008, no. 2, 63–70 | Zbl
[10] G. A. Sviridyuk , N. A. Manakova, “An Optimal Control Problem for the Hoff Equation”, Journal of Applied and Industrial Mathematics, 1:2 (2007), 247–253 | DOI | MR
[11] A. L. Shestakov, A. V. Keller, E. I. Nazarova, “Numerical Solution of the Optimal Measurement Problem”, Automation and Remote Control, 73:1 (2012), 97–104 | DOI | MR | Zbl
[12] G. A. Sviridyuk, “A problem for the generalized Boussinesq filtration equation”, Soviet Math. (Iz. VUZ), 33:2 (1989), 62–73 | MR | Zbl
[13] J. L. Lyons, Quelques methodes de r'esolution des probl'emes aux limites nonlineaires, Dunod de Gauthiers-Villars, Paris, 1969 | MR
[14] N. A. Manakova, “Optimal Control Problem for the Oskolkov Nonlinear Filtration Equation”, Differential Equations, 43:9 (2007), 1213–1221 | DOI | MR | Zbl
[15] A. A. Bayazitova, “Chislennoe issledovanie protsessov v modelyakh Khoffa”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2011, no. 7, 4–9 | Zbl