Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2014_1_1_a1, author = {E. V. Bychkov}, title = {The numerical solution of some classes of the semilinear {Sobolev-type} equations}, journal = {Journal of computational and engineering mathematics}, pages = {17--25}, publisher = {mathdoc}, volume = {1}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2014_1_1_a1/} }
TY - JOUR AU - E. V. Bychkov TI - The numerical solution of some classes of the semilinear Sobolev-type equations JO - Journal of computational and engineering mathematics PY - 2014 SP - 17 EP - 25 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2014_1_1_a1/ LA - en ID - JCEM_2014_1_1_a1 ER -
E. V. Bychkov. The numerical solution of some classes of the semilinear Sobolev-type equations. Journal of computational and engineering mathematics, Tome 1 (2014) no. 1, pp. 17-25. http://geodesic.mathdoc.fr/item/JCEM_2014_1_1_a1/
[1] G. A. Sviridyuk, S. A. Zagrebina, “Neklassicheskie modeli matematicheskoi fiziki”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2012, no. 14, 7–18 | Zbl
[2] G. A. Sviridyuk, T. G. Sukacheva, “Fazovye prostranstva odnogo klassa operatornykh polulineinykh uravnenii tipa Soboleva”, Differents. uravneniya, 26:2 (1990), 250–258 | MR | Zbl
[3] G. A. Sviridyuk, A. A. Zamyshlyaeva, “The phase spaces of a class of linear higher-order Sobolev type equations”, Differ. Uravn., 42:2 (2006), 269–278 | DOI | MR | Zbl
[4] A. A. Zamyshlyaeva, E. V. Bychkov, “Fazovoe prostranstvo modifitsirovannogo uravneniya Bussineska”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2012, no. 12, 13–19 | Zbl
[5] D. G. Arkhipov, G. A. Khabakhpashev, “The New Equation to Describe the Inelastic Interaction of Nonlinear Localized Waves in Dispersive Media”, JTEP Letters, 93:8 (2011), 423–426 | DOI
[6] S. Wang, G. Chen, “Small Amplitude Solutions of the Generalized IMBq Equation”, Mathematical Analysis and Applications, 274:2 (2002), 846–866 | DOI | MR | Zbl
[7] N. A. Manakova, E. A. Bogatyreva, “O reshenii zadachi Dirikhle–Koshi dlya uravneniya Barenblatta–Gilmana”, Izv. Irkutskogo gos. un-ta. Ser. Matematika, 7 (2014), 52–60 | Zbl
[8] L. Nirenberg, Topics in Nonlinear Functional Analysis, New ed. (AMS), New York, 2001, 263 pp. | MR | Zbl
[9] S. Leng, Introduction to Differentiable Manifolds, Springer-Verlag, New York, 2002 | MR
[10] B. D. Hassard, N. D. Kazarinoff, Y.-H. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981, 311 pp. | MR
[11] A. V. Keller, “Algoritm chislennogo resheniya zadachi shouoltera-sidorova dlya sistem leontevskogo tipa”, Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Kompyuternye tekhnologii, upravlenie, radioelektronika, 2009, no. 26 (159), 82-86