The numerical solution of some classes of the semilinear Sobolev-type equations
Journal of computational and engineering mathematics, Tome 1 (2014) no. 1, pp. 17-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

A unique solvability of the Cauchy problem for a class of semilinear Sobolev type equations of the second order is proved. The ideas and techniques, developed by G.A. Sviridyuk for the investigation of the Cauchy problem for a class of semilinear Sobolev type equations of the first order and by A.A. Zamyshlyaeva for the investigation of the high-order linear Sobolev type equations are used. We also used theory of the differential manifolds which was finally formed in S. Leng's works. In article we considered two cases. The first one is when an operator at the highest time derivative is continuously invertible. In this case for any point from a tangent bundle of an original Banach space there exists a unique solution lying in this space as trajectory. The second case when the operator isn't continuously invertible is of great interest for us. Hence we used the phase space method. Besides the Cauchy problem we considered the Showalter – Sidorov problem. The last generalizes the Cauchy problem and is more natural for Sobolev-type equation. In the last section described an algorithm of the numerical solution of Showalter – Sidorov problem for Sobolev-type equation of the second order.
Keywords: Sobolev-type equation, phase space, Showalter – Sidorov problem, algorithm of the numerical solution.
@article{JCEM_2014_1_1_a1,
     author = {E. V. Bychkov},
     title = {The numerical solution of some classes of the semilinear {Sobolev-type} equations},
     journal = {Journal of computational and engineering mathematics},
     pages = {17--25},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2014_1_1_a1/}
}
TY  - JOUR
AU  - E. V. Bychkov
TI  - The numerical solution of some classes of the semilinear Sobolev-type equations
JO  - Journal of computational and engineering mathematics
PY  - 2014
SP  - 17
EP  - 25
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2014_1_1_a1/
LA  - en
ID  - JCEM_2014_1_1_a1
ER  - 
%0 Journal Article
%A E. V. Bychkov
%T The numerical solution of some classes of the semilinear Sobolev-type equations
%J Journal of computational and engineering mathematics
%D 2014
%P 17-25
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2014_1_1_a1/
%G en
%F JCEM_2014_1_1_a1
E. V. Bychkov. The numerical solution of some classes of the semilinear Sobolev-type equations. Journal of computational and engineering mathematics, Tome 1 (2014) no. 1, pp. 17-25. http://geodesic.mathdoc.fr/item/JCEM_2014_1_1_a1/

[1] G. A. Sviridyuk, S. A. Zagrebina, “Neklassicheskie modeli matematicheskoi fiziki”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2012, no. 14, 7–18 | Zbl

[2] G. A. Sviridyuk, T. G. Sukacheva, “Fazovye prostranstva odnogo klassa operatornykh polulineinykh uravnenii tipa Soboleva”, Differents. uravneniya, 26:2 (1990), 250–258 | MR | Zbl

[3] G. A. Sviridyuk, A. A. Zamyshlyaeva, “The phase spaces of a class of linear higher-order Sobolev type equations”, Differ. Uravn., 42:2 (2006), 269–278 | DOI | MR | Zbl

[4] A. A. Zamyshlyaeva, E. V. Bychkov, “Fazovoe prostranstvo modifitsirovannogo uravneniya Bussineska”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2012, no. 12, 13–19 | Zbl

[5] D. G. Arkhipov, G. A. Khabakhpashev, “The New Equation to Describe the Inelastic Interaction of Nonlinear Localized Waves in Dispersive Media”, JTEP Letters, 93:8 (2011), 423–426 | DOI

[6] S. Wang, G. Chen, “Small Amplitude Solutions of the Generalized IMBq Equation”, Mathematical Analysis and Applications, 274:2 (2002), 846–866 | DOI | MR | Zbl

[7] N. A. Manakova, E. A. Bogatyreva, “O reshenii zadachi Dirikhle–Koshi dlya uravneniya Barenblatta–Gilmana”, Izv. Irkutskogo gos. un-ta. Ser. Matematika, 7 (2014), 52–60 | Zbl

[8] L. Nirenberg, Topics in Nonlinear Functional Analysis, New ed. (AMS), New York, 2001, 263 pp. | MR | Zbl

[9] S. Leng, Introduction to Differentiable Manifolds, Springer-Verlag, New York, 2002 | MR

[10] B. D. Hassard, N. D. Kazarinoff, Y.-H. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981, 311 pp. | MR

[11] A. V. Keller, “Algoritm chislennogo resheniya zadachi shouoltera-sidorova dlya sistem leontevskogo tipa”, Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Kompyuternye tekhnologii, upravlenie, radioelektronika, 2009, no. 26 (159), 82-86