Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2014_1_1_a0, author = {A. L. Shestakov and A. V. Keller and G. A. Sviridyuk}, title = {The theory of optimal measurements}, journal = {Journal of computational and engineering mathematics}, pages = {3--16}, publisher = {mathdoc}, volume = {1}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2014_1_1_a0/} }
TY - JOUR AU - A. L. Shestakov AU - A. V. Keller AU - G. A. Sviridyuk TI - The theory of optimal measurements JO - Journal of computational and engineering mathematics PY - 2014 SP - 3 EP - 16 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2014_1_1_a0/ LA - en ID - JCEM_2014_1_1_a0 ER -
A. L. Shestakov; A. V. Keller; G. A. Sviridyuk. The theory of optimal measurements. Journal of computational and engineering mathematics, Tome 1 (2014) no. 1, pp. 3-16. http://geodesic.mathdoc.fr/item/JCEM_2014_1_1_a0/
[1] G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992, 476 pp. | MR | Zbl
[2] F. R. Gantmacher, The Theory of Matrices, AMS Chelsea Publishing, Providence, 2000, 626 pp. | MR
[3] Yu. E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics, Springer, London, 2011 | DOI | MR | Zbl
[4] Yu. E. Gliklikh, “Investigation of Leontieff Type Equations with White Noise by the Methods of Mean Derivatives of Stochastic Processes”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 13, 24–34 | Zbl
[5] A. V. Keller, “Numerical Solution of the Optimal Control Problem for Degenerate Linear System of Equations with Showalter–Sidorov Initial Conditions”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 2008, no. 27 (127), 50–56 | Zbl
[6] A. V. Keller, “The Leontief type systems: classes of problems with the Showalter–Sidorov intial condition and numerical solving”, IIGU Ser. Matematika, 3:2 (2010), 30–43 | Zbl
[7] A. V. Keller, Numerical Study of Optimal Control Problems for Leontieff Type Models, Diss. ... doct. phys.-math. sciences, Chelyabinsk, 2011, 237 pp.
[8] A. V. Keller, E. I. Nazarova, “The regularization property and the computational solution of the dynamic measure problem”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 2010, no. 5, 32–38 | Zbl
[9] Yu. V. Khudyakov, “The Numerical Algorithm to Study the Shestakov-Sviridyuk Model of the Measuring Device with Inertia and Resonances”, Matematicheskiye Zametki SVFU, 20:2 (2013), 211–221 | Zbl
[10] M. Kovács, S. Larsson, “Introduction to Stochastic Partial Differential Equations”, Processing of «New Directions in the Mathematical and Computer Sciences» (National Universities Commission, Abuja, Nigeria, October 8-12, 2007), Publications of the ICMCS, 4, 2008, 159–232 | Zbl
[11] N. A. Manakova, “On a hyposithis of G. A. Sviridyuk”, IIGU Ser. Matematika, 4:4 (2011), 87–93 | Zbl
[12] I. V. Melnikova, A. I. Filinkov, M. A. Alshansky, “Abstract Stochastic Equations II. Solutions in Spaces of Abstract Stochastic Distributions”, Journal of Mathematical Sciences, 116:5 (2003), 3620–3656 | DOI | MR | Zbl
[13] I. V. Melnikova, A. I. Filinkov, M. A. Alshansky, “Generalized solutions to abstract stochastic problems”, J. Integ. Transf. and Special Funct., 20:3-4 (2009), 199–206 | DOI | MR | Zbl
[14] E. Nelson, Dynamical Theory of Brownian Motion, Princeton University Press, Princeton, 1967, 142 pp. | MR
[15] A. L. Shestakov, “Dynamic Accuracy of the Transmitter With a Correction Device as a Sensor Model”, Metrology, 1987, no. 2, 26–34 (in Russian) | MR
[16] A. L. Shestakov, A. V. Keller, E. I. Nazarova, “Numerical Solution of the Optimal Measurement Problem”, Automation and Remote Control, 73:1 (2012), 97–104 | DOI | MR | Zbl
[17] A. L. Shestakov, G. A. Sviridyuk, “A new approach to measurement of dynamically perturbed signals”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 2010, no. 5, 116–120 | Zbl
[18] A. L. Shestakov, G. A. Sviridyuk, “Optimal measurement of dynamically distorted signals”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 2011, no. 8, 70–75 | Zbl
[19] A. L. Shestakov, G. A. Sviridyuk, “On a New Conception of White Noise”, Obozrenie Prikladnoy i Promyshlennoy Matematiki, 19:2 (2012), 287–288
[20] A. L. Shestakov, G. A. Sviridyuk, “On the Measurement of the «White Noise»”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 13, 99–108 | Zbl
[21] A. L. Shestakov, G. A. Sviridyuk, Yu. V. Khudyakov, “Dynamic Measurement in Spaces of «Noise»”, Bulletin of the South Ural State University. Series «Computer Technologies, Automatic Control Radioelectronics», 13:2 (2013), 4–11
[22] A. L. Shestakov, G. A. Sviridyuk, M. A. Sagadeeva, “Reconstruction of a Dynamically Distorted Signal with Respect to the Measure Tranducer Degradation”, Applied Mathematical Sciences, 8:41–44 (2014), 2125–2130 | DOI
[23] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003, viii+216 pp. | MR | Zbl
[24] G. A. Sviridyuk, N. A. Manakova, “The Dynamical Models of Sobolev Type with Showalter–Sidorov Condition and Additive “Noise””, Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:1 (2014), 90–103 | DOI | Zbl
[25] G. A. Sviridyuk, S. A. Zagrebina, “The Showalter–Sidorov problem as a phenomena of the Sobolev-type equations”, IIGU Ser. Matematika, 3:1 (2010), 104–125 | MR | Zbl
[26] S. A. Zagrebina, E. A. Soldatova, “The linear Sobolev-type Equations With Relatively $p$-bounded Operators and Additive White Noise”, IIGU Ser. Matematika, 6:1 (2013), 20–34 | Zbl
[27] A. A. Zamyshlyaeva, “Stochastic Incomplete Linear Sobolev Type High-Ordered Equations with Additive White Noise”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 14, 73–82 | MR | Zbl