Extension of Continuous Convex Functions from Subspaces I
Journal of convex analysis, Tome 21 (2014) no. 4, pp. 1065-1084.

Voir la notice de l'article provenant de la source Heldermann Verlag

Let $X$ be a topological vector space, $Y\subset X$ a subspace, and $A\subset X$ an open convex set containing $0$. We are interested in the extendability of a continuous convex function $f\colon A\cap Y\to\mathbb{R}$ to a continuous convex function $F\colon A\to\mathbb{R}$. We characterize such extendability: (a) for a given $f$; (b) for every $f$. The case (b) for $A=X$ generalizes results from a paper by J. Borwein, V. Montesinos and J. Vanderwerff [Boundedness, differentiability and extensions of convex functions, J. Convex Analysis 13 (2006) 587--602], and from another one by L. Zaj\'{\i}\v{c}ek and the second author [On extensions of d.c.\ functions and convex functions, J. Convex Analysis 17 (2010) 427--440]. We also show that if $X$ is locally convex and $X/Y$ is ``conditionally separable'', then the couple $(X,Y)$ satisfies the $\mathrm{CE}$-property, saying that the above extendability holds for $A=X$ and every $f$. It follows that every couple $(X,Y)$ has the $\mathrm{CE}$-property for the weak topology. \par We consider also a stronger $\mathrm{SCE}$-property saying that the above extendability is true for every $A$ and every $f$. A deeper study of the $\mathrm{SCE}$-property will appear in a subsequent paper.
Classification : 52A41, 26B25, 46A99
Mots-clés : Convex function, extension, topological vector space, normed linear space
@article{JCA_2014_21_4_JCA_2014_21_4_a8,
     author = {C. A. De Bernardi and L. Vesel\'y},
     title = {Extension of {Continuous} {Convex} {Functions} from {Subspaces} {I}},
     journal = {Journal of convex analysis},
     pages = {1065--1084},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2014},
     url = {http://geodesic.mathdoc.fr/item/JCA_2014_21_4_JCA_2014_21_4_a8/}
}
TY  - JOUR
AU  - C. A. De Bernardi
AU  - L. Veselý
TI  - Extension of Continuous Convex Functions from Subspaces I
JO  - Journal of convex analysis
PY  - 2014
SP  - 1065
EP  - 1084
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2014_21_4_JCA_2014_21_4_a8/
ID  - JCA_2014_21_4_JCA_2014_21_4_a8
ER  - 
%0 Journal Article
%A C. A. De Bernardi
%A L. Veselý
%T Extension of Continuous Convex Functions from Subspaces I
%J Journal of convex analysis
%D 2014
%P 1065-1084
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2014_21_4_JCA_2014_21_4_a8/
%F JCA_2014_21_4_JCA_2014_21_4_a8
C. A. De Bernardi; L. Veselý. Extension of Continuous Convex Functions from Subspaces I. Journal of convex analysis, Tome 21 (2014) no. 4, pp. 1065-1084. http://geodesic.mathdoc.fr/item/JCA_2014_21_4_JCA_2014_21_4_a8/