Extension of Continuous Convex Functions from Subspaces I
Journal of convex analysis, Tome 21 (2014) no. 4, pp. 1065-1084
Voir la notice de l'article provenant de la source Heldermann Verlag
Let $X$ be a topological vector space, $Y\subset X$ a subspace, and $A\subset X$ an open convex set containing $0$. We are interested in the extendability of a continuous convex function $f\colon A\cap Y\to\mathbb{R}$ to a continuous convex function $F\colon A\to\mathbb{R}$. We characterize such extendability: (a) for a given $f$; (b) for every $f$. The case (b) for $A=X$ generalizes results from a paper by J. Borwein, V. Montesinos and J. Vanderwerff [Boundedness, differentiability and extensions of convex functions, J. Convex Analysis 13 (2006) 587--602], and from another one by L. Zaj\'{\i}\v{c}ek and the second author [On extensions of d.c.\ functions and convex functions, J. Convex Analysis 17 (2010) 427--440]. We also show that if $X$ is locally convex and $X/Y$ is ``conditionally separable'', then the couple $(X,Y)$ satisfies the $\mathrm{CE}$-property, saying that the above extendability holds for $A=X$ and every $f$. It follows that every couple $(X,Y)$ has the $\mathrm{CE}$-property for the weak topology. \par We consider also a stronger $\mathrm{SCE}$-property saying that the above extendability is true for every $A$ and every $f$. A deeper study of the $\mathrm{SCE}$-property will appear in a subsequent paper.
Classification :
52A41, 26B25, 46A99
Mots-clés : Convex function, extension, topological vector space, normed linear space
Mots-clés : Convex function, extension, topological vector space, normed linear space
@article{JCA_2014_21_4_JCA_2014_21_4_a8,
author = {C. A. De Bernardi and L. Vesel\'y},
title = {Extension of {Continuous} {Convex} {Functions} from {Subspaces} {I}},
journal = {Journal of convex analysis},
pages = {1065--1084},
publisher = {mathdoc},
volume = {21},
number = {4},
year = {2014},
url = {http://geodesic.mathdoc.fr/item/JCA_2014_21_4_JCA_2014_21_4_a8/}
}
TY - JOUR AU - C. A. De Bernardi AU - L. Veselý TI - Extension of Continuous Convex Functions from Subspaces I JO - Journal of convex analysis PY - 2014 SP - 1065 EP - 1084 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2014_21_4_JCA_2014_21_4_a8/ ID - JCA_2014_21_4_JCA_2014_21_4_a8 ER -
C. A. De Bernardi; L. Veselý. Extension of Continuous Convex Functions from Subspaces I. Journal of convex analysis, Tome 21 (2014) no. 4, pp. 1065-1084. http://geodesic.mathdoc.fr/item/JCA_2014_21_4_JCA_2014_21_4_a8/