Primal Attainment in Convex Infinite Optimization Duality
Journal of convex analysis, Tome 21 (2014) no. 4, pp. 1043-1064
Voir la notice de l'article provenant de la source Heldermann Verlag
This article provides results guarateeing that the optimal value of a given convex infinite optimization problem and its corresponding surrogate Lagrangian dual coincide and the primal optimal value is attainable. The conditions ensuring converse strong Lagrangian (in short, minsup) duality involve the weakly-inf-(locally) compactness of suitable functions and the linearity or relative closedness of some sets depending on the data. Applications are given to different areas of convex optimization, including an extension of the Clark-Duffin Theorem for ordinary convex programs.
Classification :
90C25, 90C48, 49N15
Mots-clés : Convex infinite programming, converse strong duality, minsup duality
Mots-clés : Convex infinite programming, converse strong duality, minsup duality
@article{JCA_2014_21_4_JCA_2014_21_4_a7,
author = {M. A. Goberna and M. A. L\'opez and M. Volle},
title = {Primal {Attainment} in {Convex} {Infinite} {Optimization} {Duality}},
journal = {Journal of convex analysis},
pages = {1043--1064},
publisher = {mathdoc},
volume = {21},
number = {4},
year = {2014},
url = {http://geodesic.mathdoc.fr/item/JCA_2014_21_4_JCA_2014_21_4_a7/}
}
TY - JOUR AU - M. A. Goberna AU - M. A. López AU - M. Volle TI - Primal Attainment in Convex Infinite Optimization Duality JO - Journal of convex analysis PY - 2014 SP - 1043 EP - 1064 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2014_21_4_JCA_2014_21_4_a7/ ID - JCA_2014_21_4_JCA_2014_21_4_a7 ER -
M. A. Goberna; M. A. López; M. Volle. Primal Attainment in Convex Infinite Optimization Duality. Journal of convex analysis, Tome 21 (2014) no. 4, pp. 1043-1064. http://geodesic.mathdoc.fr/item/JCA_2014_21_4_JCA_2014_21_4_a7/