An Intrinsic Notion of Convexity for Minimax
Journal of convex analysis, Tome 21 (2014) no. 4, pp. 1105-1139
Voir la notice de l'article provenant de la source Heldermann Verlag
A proper extension of Fan's minimax theorem, sharp in a sense, is provided. In particular, a natural kind of convexity for minimax inequalities arises. In addition a vector-valued Lax-Milgram theorem is derived, which in turn implies a characterization of the solvability of systems with infinitely many variational equations.
Classification :
49K35, 49J40, 58E30
Mots-clés : Minimax theorems, Lax-Milgram theorem, variational equations
Mots-clés : Minimax theorems, Lax-Milgram theorem, variational equations
@article{JCA_2014_21_4_JCA_2014_21_4_a10,
author = {M. Ruiz Gal\'an},
title = {An {Intrinsic} {Notion} of {Convexity} for {Minimax}},
journal = {Journal of convex analysis},
pages = {1105--1139},
publisher = {mathdoc},
volume = {21},
number = {4},
year = {2014},
url = {http://geodesic.mathdoc.fr/item/JCA_2014_21_4_JCA_2014_21_4_a10/}
}
M. Ruiz Galán. An Intrinsic Notion of Convexity for Minimax. Journal of convex analysis, Tome 21 (2014) no. 4, pp. 1105-1139. http://geodesic.mathdoc.fr/item/JCA_2014_21_4_JCA_2014_21_4_a10/