An Intrinsic Notion of Convexity for Minimax
Journal of convex analysis, Tome 21 (2014) no. 4, pp. 1105-1139.

Voir la notice de l'article provenant de la source Heldermann Verlag

A proper extension of Fan's minimax theorem, sharp in a sense, is provided. In particular, a natural kind of convexity for minimax inequalities arises. In addition a vector-valued Lax-Milgram theorem is derived, which in turn implies a characterization of the solvability of systems with infinitely many variational equations.
Classification : 49K35, 49J40, 58E30
Mots-clés : Minimax theorems, Lax-Milgram theorem, variational equations
@article{JCA_2014_21_4_JCA_2014_21_4_a10,
     author = {M. Ruiz Gal\'an},
     title = {An {Intrinsic} {Notion} of {Convexity} for {Minimax}},
     journal = {Journal of convex analysis},
     pages = {1105--1139},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2014},
     url = {http://geodesic.mathdoc.fr/item/JCA_2014_21_4_JCA_2014_21_4_a10/}
}
TY  - JOUR
AU  - M. Ruiz Galán
TI  - An Intrinsic Notion of Convexity for Minimax
JO  - Journal of convex analysis
PY  - 2014
SP  - 1105
EP  - 1139
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2014_21_4_JCA_2014_21_4_a10/
ID  - JCA_2014_21_4_JCA_2014_21_4_a10
ER  - 
%0 Journal Article
%A M. Ruiz Galán
%T An Intrinsic Notion of Convexity for Minimax
%J Journal of convex analysis
%D 2014
%P 1105-1139
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2014_21_4_JCA_2014_21_4_a10/
%F JCA_2014_21_4_JCA_2014_21_4_a10
M. Ruiz Galán. An Intrinsic Notion of Convexity for Minimax. Journal of convex analysis, Tome 21 (2014) no. 4, pp. 1105-1139. http://geodesic.mathdoc.fr/item/JCA_2014_21_4_JCA_2014_21_4_a10/