On Quasi-Gamma Functions
Journal of convex analysis, Tome 21 (2014) no. 3, pp. 765-783
Voir la notice de l'article provenant de la source Heldermann Verlag
We define the quasi-gamma functions as the functions $f: ]0,\infty[ \longrightarrow ]0,\infty[$ such that $f(1)=1$, $f(x+1)=xf(x)$ for every $x>0$, and $f$ is quasi-convex. The main example of quasi-gamma function is the gamma function defined by Euler. We study some properties of the quasi-gamma functions and of the class ${\emph Q}$ of these functions.
Classification :
26A51, 33B15, 52A41
Mots-clés : Gamma function, quasi-gamma function, quasi-convex function
Mots-clés : Gamma function, quasi-gamma function, quasi-convex function
@article{JCA_2014_21_3_JCA_2014_21_3_a9,
author = {T. Berm\'udez and A. Martin\'on and K. Sadarangani},
title = {On {Quasi-Gamma} {Functions}},
journal = {Journal of convex analysis},
pages = {765--783},
publisher = {mathdoc},
volume = {21},
number = {3},
year = {2014},
url = {http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a9/}
}
T. Bermúdez; A. Martinón; K. Sadarangani. On Quasi-Gamma Functions. Journal of convex analysis, Tome 21 (2014) no. 3, pp. 765-783. http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a9/