On Quasi-Gamma Functions
Journal of convex analysis, Tome 21 (2014) no. 3, pp. 765-783.

Voir la notice de l'article provenant de la source Heldermann Verlag

We define the quasi-gamma functions as the functions $f: ]0,\infty[ \longrightarrow ]0,\infty[$ such that $f(1)=1$, $f(x+1)=xf(x)$ for every $x>0$, and $f$ is quasi-convex. The main example of quasi-gamma function is the gamma function defined by Euler. We study some properties of the quasi-gamma functions and of the class ${\emph Q}$ of these functions.
Classification : 26A51, 33B15, 52A41
Mots-clés : Gamma function, quasi-gamma function, quasi-convex function
@article{JCA_2014_21_3_JCA_2014_21_3_a9,
     author = {T. Berm\'udez and A. Martin\'on and K. Sadarangani},
     title = {On {Quasi-Gamma} {Functions}},
     journal = {Journal of convex analysis},
     pages = {765--783},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2014},
     url = {http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a9/}
}
TY  - JOUR
AU  - T. Bermúdez
AU  - A. Martinón
AU  - K. Sadarangani
TI  - On Quasi-Gamma Functions
JO  - Journal of convex analysis
PY  - 2014
SP  - 765
EP  - 783
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a9/
ID  - JCA_2014_21_3_JCA_2014_21_3_a9
ER  - 
%0 Journal Article
%A T. Bermúdez
%A A. Martinón
%A K. Sadarangani
%T On Quasi-Gamma Functions
%J Journal of convex analysis
%D 2014
%P 765-783
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a9/
%F JCA_2014_21_3_JCA_2014_21_3_a9
T. Bermúdez; A. Martinón; K. Sadarangani. On Quasi-Gamma Functions. Journal of convex analysis, Tome 21 (2014) no. 3, pp. 765-783. http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a9/