Supremum Norms for 2-Homogeneous Polynomials on Circle Sectors
Journal of convex analysis, Tome 21 (2014) no. 3, pp. 745-764
Voir la notice de l'article provenant de la source Heldermann Verlag
We consider the Banach space of two homogeneous polynomials endowed with the supremum norm $\|\cdot\|_{D(\beta)}$ over circle sectors $D(\beta)$ of angle $\beta$ for several values of $\beta\in[0,2\pi]$. We provide an explicit formula for $\|\cdot\|_{D(\beta)}$, a full description of the extreme points of the corresponding unit balls, and a parametrization and a plot of their unit spheres. This work is an extension of a series of papers on the same topic published in the last decade and it has a number of applications to obtain polynomial-type inequalities.
Classification :
46G25, 46B28, 41A44
Mots-clés : Bernstein and Markov inequalities, unconditional constants, polarizations constants, polynomial inequalities, homogeneous polynomials, extreme points
Mots-clés : Bernstein and Markov inequalities, unconditional constants, polarizations constants, polynomial inequalities, homogeneous polynomials, extreme points
@article{JCA_2014_21_3_JCA_2014_21_3_a8,
author = {G. A. Mu\~noz-Fern\'andez and D. Pellegrino and J. B. Seoane-Sep\'ulveda and A. Weber},
title = {Supremum {Norms} for {2-Homogeneous} {Polynomials} on {Circle} {Sectors}},
journal = {Journal of convex analysis},
pages = {745--764},
publisher = {mathdoc},
volume = {21},
number = {3},
year = {2014},
url = {http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a8/}
}
TY - JOUR AU - G. A. Muñoz-Fernández AU - D. Pellegrino AU - J. B. Seoane-Sepúlveda AU - A. Weber TI - Supremum Norms for 2-Homogeneous Polynomials on Circle Sectors JO - Journal of convex analysis PY - 2014 SP - 745 EP - 764 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a8/ ID - JCA_2014_21_3_JCA_2014_21_3_a8 ER -
%0 Journal Article %A G. A. Muñoz-Fernández %A D. Pellegrino %A J. B. Seoane-Sepúlveda %A A. Weber %T Supremum Norms for 2-Homogeneous Polynomials on Circle Sectors %J Journal of convex analysis %D 2014 %P 745-764 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a8/ %F JCA_2014_21_3_JCA_2014_21_3_a8
G. A. Muñoz-Fernández; D. Pellegrino; J. B. Seoane-Sepúlveda; A. Weber. Supremum Norms for 2-Homogeneous Polynomials on Circle Sectors. Journal of convex analysis, Tome 21 (2014) no. 3, pp. 745-764. http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a8/