Gâteaux and Hadamard Differentiability via Directional Differentiability
Journal of convex analysis, Tome 21 (2014) no. 3, pp. 703-713.

Voir la notice de l'article provenant de la source Heldermann Verlag

Let $X$ be a separable Banach space, $Y$ a Banach space and $f: X \to Y$ an arbitrary mapping. Then the following implication holds at each point $x\in X$ except a $\sigma$-directionally porous set:\ If the one-sided Hadamard directional derivative $f'_{H+}(x,u)$ exists in all directions $u$ from a set $S_x \subset X$ whose linear span is dense in $X$, then $f$ is Hadamard differentiable at $x$. This theorem improves and generalizes a recent result of A. D. Ioffe, in which the linear span of $S_x$ equals $X$ and $Y = \mathbb{R}$. An analogous theorem, in which $f$ is pointwise Lipschitz, and which deals with the usual one-sided derivatives and G\^ ateaux differentiability is also proved. It generalizes a result of D. Preiss and the author, in which $f$ is supposed to be Lipschitz.
Classification : 46G05, 26B05, 49J50
Mots-clés : Gateaux differentiability, Hadamard differentiability, directional derivatives, Hadamard directional derivatives, sigma-directionally porous set, pointwise Lipschitz mapping
@article{JCA_2014_21_3_JCA_2014_21_3_a5,
     author = {L. Zaj{\'\i}cek},
     title = {G\^ateaux and {Hadamard} {Differentiability} via {Directional} {Differentiability}},
     journal = {Journal of convex analysis},
     pages = {703--713},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2014},
     url = {http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a5/}
}
TY  - JOUR
AU  - L. Zajícek
TI  - Gâteaux and Hadamard Differentiability via Directional Differentiability
JO  - Journal of convex analysis
PY  - 2014
SP  - 703
EP  - 713
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a5/
ID  - JCA_2014_21_3_JCA_2014_21_3_a5
ER  - 
%0 Journal Article
%A L. Zajícek
%T Gâteaux and Hadamard Differentiability via Directional Differentiability
%J Journal of convex analysis
%D 2014
%P 703-713
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a5/
%F JCA_2014_21_3_JCA_2014_21_3_a5
L. Zajícek. Gâteaux and Hadamard Differentiability via Directional Differentiability. Journal of convex analysis, Tome 21 (2014) no. 3, pp. 703-713. http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a5/