Approximation by DC Functions and Application to Representation of a Normed Semigroup
Journal of convex analysis, Tome 21 (2014) no. 3, pp. 651-661
Voir la notice de l'article provenant de la source Heldermann Verlag
Let $\Omega$ be a nonempty compact set of a locally convex space $L$, and let $C(\Omega)$ be the Banach space of all real-valued continuous functions on $\Omega$ endowed with the $\sup$-norm. In this paper, we show first that for every $f\in C(\Omega)$, and for every $\varepsilon>0$, there are continuous affine functions $(g_i)_{i=1}^m, (h_j)_{j=1}^n$ on $L$ for some $m,n\in\mathbb{N}$ such that $$ |f(\omega)-[(g_1\vee g_2\vee\cdots\vee{g_m})-(h_1\vee h_2\vee \cdots\vee{h_n})](\omega)|\varepsilon $$ uniformly for $\omega\in\Omega$. We prove then that if $\Omega=B_{X^*}$, the closed unit ball of $X^*$ of a Banach space $X$ endowed with the $w^*$-topology, then $C(\Omega)^*$ is just the dual of the normed semigroup b$(X)$ generated closed balls in $X$.
@article{JCA_2014_21_3_JCA_2014_21_3_a2,
author = {L. Cheng and Y. Zhou},
title = {Approximation by {DC} {Functions} and {Application} to {Representation} of a {Normed} {Semigroup}},
journal = {Journal of convex analysis},
pages = {651--661},
publisher = {mathdoc},
volume = {21},
number = {3},
year = {2014},
url = {http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a2/}
}
TY - JOUR AU - L. Cheng AU - Y. Zhou TI - Approximation by DC Functions and Application to Representation of a Normed Semigroup JO - Journal of convex analysis PY - 2014 SP - 651 EP - 661 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a2/ ID - JCA_2014_21_3_JCA_2014_21_3_a2 ER -
%0 Journal Article %A L. Cheng %A Y. Zhou %T Approximation by DC Functions and Application to Representation of a Normed Semigroup %J Journal of convex analysis %D 2014 %P 651-661 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a2/ %F JCA_2014_21_3_JCA_2014_21_3_a2
L. Cheng; Y. Zhou. Approximation by DC Functions and Application to Representation of a Normed Semigroup. Journal of convex analysis, Tome 21 (2014) no. 3, pp. 651-661. http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a2/