Measures of Weak Noncompactness in Non-Archimedean Banach Spaces
Journal of convex analysis, Tome 21 (2014) no. 3, pp. 833-849
Voir la notice de l'article provenant de la source Heldermann Verlag
Let $E$ be a non-Archimedean Banach space over a non-Archimedean locally compact non-trivially valued field $\mathbb{K}:=(\mathbb{K},|.|)$. Let $E''$ be its bidual and $M$ a bounded set in $E$. We say that $M$ is $\varepsilon$-weakly relatively compact if $\ \overline{M}^{\sigma (E'',E')}\subset E+B_{E^{\prime \prime },\varepsilon}$, where $B_{E^{\prime \prime },\varepsilon }$ is the closed ball in $E''$ with the radius $\varepsilon \geq 0$. In this paper we describe measures of noncompactness $\gamma ,$ $k$ and De Blasi measure $\omega$. We show that $\gamma \left( M\right) \leq k\left( M\right) \leq \omega \left( M\right) =\omega (acoM)\leq \frac{1}{\left\vert \rho \right\vert }\gamma \left( M\right) ,$ where $\rho $ ($\left\vert \rho \right\vert 1)$ is an uniformizing element in $\mathbb{K}$, and $\omega (M)=\sup \{\overline{\lim_{m}}\,\,\,dist\left( x_{m},\left[ x_{1},\dots ,x_{m-1}\right] \right) :\left( x_{m}\right) \subset M$ $\}$; the latter equality is purely non-Archimedean. In particular, assuming $\left\vert \mathbb{K}\right\vert =\{||x||:x\in E\},$ we prove that the absolutely convex hull $acoM$ of a $\varepsilon -$weakly relatively compact subset $M$ in $E$ is $\varepsilon -$weakly relatively compact. In fact we show that in this case for a bounded set $M$ in $E$ we have $\gamma \left( M\right) =\gamma \left( acoM\right) =k\left( M\right) =k(acoM)=\omega \left( M\right)$, Note that the above equalities fail in general for real Banach spaces by results of A. S. Granero [\textit{An extension of the Krein-Smulian theorem}, Rev. Mat. Iberoam. 22 (2006) 93--100] and K. Astala and H. O. Tylli [\textit{Seminorms related to weak compactness and to Tauberian operators}, Math. Proc. Cambridge Philos. Soc. 107 (1990) 367--375]. Most proofs are strictly non-Archimedean. A non-Archimedean variant of another quantitative Krein's theorem due to Fabian, Hajek, Montesinos and Zizler is also provided, see Corollary 9.
Classification :
46S10, 46A50, 54C35
Mots-clés : Krein's theorem, Compactness, Measures of weak noncompactness
Mots-clés : Krein's theorem, Compactness, Measures of weak noncompactness
@article{JCA_2014_21_3_JCA_2014_21_3_a13,
author = {C. Angosto and J. Kakol and A. Kubzdela},
title = {Measures of {Weak} {Noncompactness} in {Non-Archimedean} {Banach} {Spaces}},
journal = {Journal of convex analysis},
pages = {833--849},
publisher = {mathdoc},
volume = {21},
number = {3},
year = {2014},
url = {http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a13/}
}
TY - JOUR AU - C. Angosto AU - J. Kakol AU - A. Kubzdela TI - Measures of Weak Noncompactness in Non-Archimedean Banach Spaces JO - Journal of convex analysis PY - 2014 SP - 833 EP - 849 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a13/ ID - JCA_2014_21_3_JCA_2014_21_3_a13 ER -
%0 Journal Article %A C. Angosto %A J. Kakol %A A. Kubzdela %T Measures of Weak Noncompactness in Non-Archimedean Banach Spaces %J Journal of convex analysis %D 2014 %P 833-849 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a13/ %F JCA_2014_21_3_JCA_2014_21_3_a13
C. Angosto; J. Kakol; A. Kubzdela. Measures of Weak Noncompactness in Non-Archimedean Banach Spaces. Journal of convex analysis, Tome 21 (2014) no. 3, pp. 833-849. http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a13/