Subdifferential and Properties of Convex Functions with Respect to Vector Fields
Journal of convex analysis, Tome 21 (2014) no. 3, pp. 785-81.

Voir la notice de l'article provenant de la source Heldermann Verlag

We study properties of functions convex with respect to a given family χ of vector fields, a notion that appears natural in Carnot-Carathéodory metric spaces. We define a suitable subdifferential and show that a continuous function is χ-convex if and only if such subdifferential is nonempty at every point. For vector fields of Carnot type we deduce from this property that a generalized Fenchel transform is involutive and a weak form of Jensen inequality. Finally we introduce and compare several notions of χ-affine functions and show their connections with χ-convexity.
Mots-clés : Convex functions in Carnot groups, Carnot-Caratheodory metric spaces, subdifferential, Legendre-Fenchel transform, convex duality, Jensen inequality
@article{JCA_2014_21_3_JCA_2014_21_3_a10,
     author = {M. Bardi and F. Dragoni},
     title = {Subdifferential and {Properties} of {Convex} {Functions} with {Respect} to {Vector} {Fields}},
     journal = {Journal of convex analysis},
     pages = {785--81},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2014},
     url = {http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a10/}
}
TY  - JOUR
AU  - M. Bardi
AU  - F. Dragoni
TI  - Subdifferential and Properties of Convex Functions with Respect to Vector Fields
JO  - Journal of convex analysis
PY  - 2014
SP  - 785
EP  - 81
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a10/
ID  - JCA_2014_21_3_JCA_2014_21_3_a10
ER  - 
%0 Journal Article
%A M. Bardi
%A F. Dragoni
%T Subdifferential and Properties of Convex Functions with Respect to Vector Fields
%J Journal of convex analysis
%D 2014
%P 785-81
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a10/
%F JCA_2014_21_3_JCA_2014_21_3_a10
M. Bardi; F. Dragoni. Subdifferential and Properties of Convex Functions with Respect to Vector Fields. Journal of convex analysis, Tome 21 (2014) no. 3, pp. 785-81. http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a10/