Subdifferential and Properties of Convex Functions with Respect to Vector Fields
Journal of convex analysis, Tome 21 (2014) no. 3, pp. 785-81
Voir la notice de l'article provenant de la source Heldermann Verlag
We study properties of functions convex with respect to a given family χ of vector fields, a notion that appears natural in Carnot-Carathéodory metric spaces. We define a suitable subdifferential and show that a continuous function is χ-convex if and only if such subdifferential is nonempty at every point. For vector fields of Carnot type we deduce from this property that a generalized Fenchel transform is involutive and a weak form of Jensen inequality. Finally we introduce and compare several notions of χ-affine functions and show their connections with χ-convexity.
Mots-clés :
Convex functions in Carnot groups, Carnot-Caratheodory metric spaces, subdifferential, Legendre-Fenchel transform, convex duality, Jensen inequality
@article{JCA_2014_21_3_JCA_2014_21_3_a10,
author = {M. Bardi and F. Dragoni},
title = {Subdifferential and {Properties} of {Convex} {Functions} with {Respect} to {Vector} {Fields}},
journal = {Journal of convex analysis},
pages = {785--81},
publisher = {mathdoc},
volume = {21},
number = {3},
year = {2014},
url = {http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a10/}
}
TY - JOUR AU - M. Bardi AU - F. Dragoni TI - Subdifferential and Properties of Convex Functions with Respect to Vector Fields JO - Journal of convex analysis PY - 2014 SP - 785 EP - 81 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a10/ ID - JCA_2014_21_3_JCA_2014_21_3_a10 ER -
%0 Journal Article %A M. Bardi %A F. Dragoni %T Subdifferential and Properties of Convex Functions with Respect to Vector Fields %J Journal of convex analysis %D 2014 %P 785-81 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a10/ %F JCA_2014_21_3_JCA_2014_21_3_a10
M. Bardi; F. Dragoni. Subdifferential and Properties of Convex Functions with Respect to Vector Fields. Journal of convex analysis, Tome 21 (2014) no. 3, pp. 785-81. http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a10/