Minimal Systolic Circles
Journal of convex analysis, Tome 21 (2014) no. 3, pp. 619-65.

Voir la notice de l'article provenant de la source Heldermann Verlag

We control the evolution of convex cyclic polygons by calculating the corresponding evolutionary circumradius (minimal systolic circle) each time a convex polygon is inscribed to a circle until it reaches the termination circle (minimum systolic circle) of the isoperimetric problem. We show that there exists a minimal circumradius for weighted convex quadrilaterals and pentagons such that their sides are given by the variable weights which satisfy the isoperimetric condition of the corresponding inverse weighted Fermat-Torricelli problem and the dynamic plasticity equations in the two dimensional Euclidean space. By splitting the weights along the prescribed rays which meet at the corresponding weighted Fermat-Torricelli point we deduce the generalized plasticity equations for convex polygons and we show that for a large number of variable weights the minimal circumradius approaches the minimum circumradius which corresponds to a regular polygon for equal weights. Furthermore, we obtain that the Gauss' minimal systolic circle of the generalized Gauss problem is smaller than the Fermat's minimal systolic circle of the Fermat-Torricelli problem for convex quadrilaterals.
Classification : 52A40, 51M16, 51N20
Mots-clés : Isoperimetric inequality, polygons, dynamic plasticity, generalized plasticity, inverse Fermat-Torricelli problem, systolic circle, Fermat-Torricelli problem, Gauss problem
@article{JCA_2014_21_3_JCA_2014_21_3_a1,
     author = {A. N. Zachos},
     title = {Minimal {Systolic} {Circles}},
     journal = {Journal of convex analysis},
     pages = {619--65},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2014},
     url = {http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a1/}
}
TY  - JOUR
AU  - A. N. Zachos
TI  - Minimal Systolic Circles
JO  - Journal of convex analysis
PY  - 2014
SP  - 619
EP  - 65
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a1/
ID  - JCA_2014_21_3_JCA_2014_21_3_a1
ER  - 
%0 Journal Article
%A A. N. Zachos
%T Minimal Systolic Circles
%J Journal of convex analysis
%D 2014
%P 619-65
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a1/
%F JCA_2014_21_3_JCA_2014_21_3_a1
A. N. Zachos. Minimal Systolic Circles. Journal of convex analysis, Tome 21 (2014) no. 3, pp. 619-65. http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a1/