On the Monotone Polar and Representable Closures of Monotone Operators
Journal of convex analysis, Tome 21 (2014) no. 2, pp. 495-505
Voir la notice de l'article provenant de la source Heldermann Verlag
Fitzpatrick proved that maximal monotone operators in topological vector spaces are representable by lower semi-continuous convex functions. A monotone operator is representable if it can be represented by a lower-semicontinuous convex function. The smallest representable extension of a monotone operator is its representable closure. The intersection of all maximal monotone extensions of a monotone operator, its monotone polar closure, is also representable. A natural question is whether these two closures coincide. In finite dimensional spaces they do coincide. The aim of this paper is to analyze such a question in the context of topological vector spaces. In particular, we prove in this context that if the convex hull of a monotone operator is not monotone, then the representable closure and the monotone polar closure of such operator do coincide.
Classification :
46A99, 47H05, 47N10
Mots-clés : Monotone operator, representable operator, monotone polar, closure, topological vector space
Mots-clés : Monotone operator, representable operator, monotone polar, closure, topological vector space
@article{JCA_2014_21_2_JCA_2014_21_2_a9,
author = {O. Bueno and J. E. Mart{\'\i}nez-Legaz and B. F. Svaiter},
title = {On the {Monotone} {Polar} and {Representable} {Closures} of {Monotone} {Operators}},
journal = {Journal of convex analysis},
pages = {495--505},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {2014},
url = {http://geodesic.mathdoc.fr/item/JCA_2014_21_2_JCA_2014_21_2_a9/}
}
TY - JOUR AU - O. Bueno AU - J. E. Martínez-Legaz AU - B. F. Svaiter TI - On the Monotone Polar and Representable Closures of Monotone Operators JO - Journal of convex analysis PY - 2014 SP - 495 EP - 505 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2014_21_2_JCA_2014_21_2_a9/ ID - JCA_2014_21_2_JCA_2014_21_2_a9 ER -
%0 Journal Article %A O. Bueno %A J. E. Martínez-Legaz %A B. F. Svaiter %T On the Monotone Polar and Representable Closures of Monotone Operators %J Journal of convex analysis %D 2014 %P 495-505 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCA_2014_21_2_JCA_2014_21_2_a9/ %F JCA_2014_21_2_JCA_2014_21_2_a9
O. Bueno; J. E. Martínez-Legaz; B. F. Svaiter. On the Monotone Polar and Representable Closures of Monotone Operators. Journal of convex analysis, Tome 21 (2014) no. 2, pp. 495-505. http://geodesic.mathdoc.fr/item/JCA_2014_21_2_JCA_2014_21_2_a9/