On the Monotone Polar and Representable Closures of Monotone Operators
Journal of convex analysis, Tome 21 (2014) no. 2, pp. 495-505.

Voir la notice de l'article provenant de la source Heldermann Verlag

Fitzpatrick proved that maximal monotone operators in topological vector spaces are representable by lower semi-continuous convex functions. A monotone operator is representable if it can be represented by a lower-semicontinuous convex function. The smallest representable extension of a monotone operator is its representable closure. The intersection of all maximal monotone extensions of a monotone operator, its monotone polar closure, is also representable. A natural question is whether these two closures coincide. In finite dimensional spaces they do coincide. The aim of this paper is to analyze such a question in the context of topological vector spaces. In particular, we prove in this context that if the convex hull of a monotone operator is not monotone, then the representable closure and the monotone polar closure of such operator do coincide.
Classification : 46A99, 47H05, 47N10
Mots-clés : Monotone operator, representable operator, monotone polar, closure, topological vector space
@article{JCA_2014_21_2_JCA_2014_21_2_a9,
     author = {O. Bueno and J. E. Mart{\'\i}nez-Legaz and B. F. Svaiter},
     title = {On the {Monotone} {Polar} and {Representable} {Closures} of {Monotone} {Operators}},
     journal = {Journal of convex analysis},
     pages = {495--505},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2014},
     url = {http://geodesic.mathdoc.fr/item/JCA_2014_21_2_JCA_2014_21_2_a9/}
}
TY  - JOUR
AU  - O. Bueno
AU  - J. E. Martínez-Legaz
AU  - B. F. Svaiter
TI  - On the Monotone Polar and Representable Closures of Monotone Operators
JO  - Journal of convex analysis
PY  - 2014
SP  - 495
EP  - 505
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2014_21_2_JCA_2014_21_2_a9/
ID  - JCA_2014_21_2_JCA_2014_21_2_a9
ER  - 
%0 Journal Article
%A O. Bueno
%A J. E. Martínez-Legaz
%A B. F. Svaiter
%T On the Monotone Polar and Representable Closures of Monotone Operators
%J Journal of convex analysis
%D 2014
%P 495-505
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2014_21_2_JCA_2014_21_2_a9/
%F JCA_2014_21_2_JCA_2014_21_2_a9
O. Bueno; J. E. Martínez-Legaz; B. F. Svaiter. On the Monotone Polar and Representable Closures of Monotone Operators. Journal of convex analysis, Tome 21 (2014) no. 2, pp. 495-505. http://geodesic.mathdoc.fr/item/JCA_2014_21_2_JCA_2014_21_2_a9/