Convexities on Ordered Structures Have Their Krein-Milman Theorem
Journal of convex analysis, Tome 21 (2014) no. 1, pp. 89-12.

Voir la notice de l'article provenant de la source Heldermann Verlag

We show analogues of the classical Krein-Milman theorem for several ordered algebraic structures, especially in a semilattice (non-linear) framework. In that case, subsemilattices are seen as convex subsets, and for our proofs we use arguments from continuous lattice theory and abstract convexity theory.
Classification : 22A26, 52A01, 06A06, 06A12, 06B30, 14T05
Mots-clés : Abstract convexity, max-plus convexity, tropical convexity, Krein-Milman theorem, convex geometries, antimatroids, partially ordered sets, semilattices, Lawson semilattices, lattices
@article{JCA_2014_21_1_JCA_2014_21_1_a4,
     author = {P. Poncet},
     title = {Convexities on {Ordered} {Structures} {Have} {Their} {Krein-Milman} {Theorem}},
     journal = {Journal of convex analysis},
     pages = {89--12},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2014},
     url = {http://geodesic.mathdoc.fr/item/JCA_2014_21_1_JCA_2014_21_1_a4/}
}
TY  - JOUR
AU  - P. Poncet
TI  - Convexities on Ordered Structures Have Their Krein-Milman Theorem
JO  - Journal of convex analysis
PY  - 2014
SP  - 89
EP  - 12
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2014_21_1_JCA_2014_21_1_a4/
ID  - JCA_2014_21_1_JCA_2014_21_1_a4
ER  - 
%0 Journal Article
%A P. Poncet
%T Convexities on Ordered Structures Have Their Krein-Milman Theorem
%J Journal of convex analysis
%D 2014
%P 89-12
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2014_21_1_JCA_2014_21_1_a4/
%F JCA_2014_21_1_JCA_2014_21_1_a4
P. Poncet. Convexities on Ordered Structures Have Their Krein-Milman Theorem. Journal of convex analysis, Tome 21 (2014) no. 1, pp. 89-12. http://geodesic.mathdoc.fr/item/JCA_2014_21_1_JCA_2014_21_1_a4/