Two Conditions for a Function to be Convex
Journal of convex analysis, Tome 20 (2013) no. 4, pp. 1189-1201.

Voir la notice de l'article provenant de la source Heldermann Verlag

We present two sufficient conditions in order that a real function on a finite-dimensional normed space be convex (Theorems 1 and 2) and show some consequences of them. In particular, it comes out that a real function $f$ on a finite-dimensional Hilbert space $X$ is convex, provided that $f$ has the property that for each point $y \in X$ and each $\lambda > 0$ the real function $X \ni x \to \lambda f(x) + \|x-y\|^2$ has a unique global minimum.
@article{JCA_2013_20_4_JCA_2013_20_4_a16,
     author = {A. O. Caruso and A. Villani},
     title = {Two {Conditions} for a {Function} to be {Convex}},
     journal = {Journal of convex analysis},
     pages = {1189--1201},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JCA_2013_20_4_JCA_2013_20_4_a16/}
}
TY  - JOUR
AU  - A. O. Caruso
AU  - A. Villani
TI  - Two Conditions for a Function to be Convex
JO  - Journal of convex analysis
PY  - 2013
SP  - 1189
EP  - 1201
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2013_20_4_JCA_2013_20_4_a16/
ID  - JCA_2013_20_4_JCA_2013_20_4_a16
ER  - 
%0 Journal Article
%A A. O. Caruso
%A A. Villani
%T Two Conditions for a Function to be Convex
%J Journal of convex analysis
%D 2013
%P 1189-1201
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2013_20_4_JCA_2013_20_4_a16/
%F JCA_2013_20_4_JCA_2013_20_4_a16
A. O. Caruso; A. Villani. Two Conditions for a Function to be Convex. Journal of convex analysis, Tome 20 (2013) no. 4, pp. 1189-1201. http://geodesic.mathdoc.fr/item/JCA_2013_20_4_JCA_2013_20_4_a16/