Geometric Duality for Convex Vector Optimization Problems
Journal of convex analysis, Tome 20 (2013) no. 3, pp. 813-832.

Voir la notice de l'article provenant de la source Heldermann Verlag

Geometric duality theory for multiple objective linear programming problems turned out to be very useful for the development of efficient algorithms to generate or approximate the whole set of nondominated points in the outcome space. This article extends the geometric duality theory to convex vector optimization problems.
Classification : 52A41, 52A20, 90C46, 90C29
Mots-clés : Geometric duality theory, vector optimization, Legendre-Fenchel conjugate, second-order subdifferential, Dupin indicatrix
@article{JCA_2013_20_3_JCA_2013_20_3_a9,
     author = {F. Heyde},
     title = {Geometric {Duality} for {Convex} {Vector} {Optimization} {Problems}},
     journal = {Journal of convex analysis},
     pages = {813--832},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JCA_2013_20_3_JCA_2013_20_3_a9/}
}
TY  - JOUR
AU  - F. Heyde
TI  - Geometric Duality for Convex Vector Optimization Problems
JO  - Journal of convex analysis
PY  - 2013
SP  - 813
EP  - 832
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2013_20_3_JCA_2013_20_3_a9/
ID  - JCA_2013_20_3_JCA_2013_20_3_a9
ER  - 
%0 Journal Article
%A F. Heyde
%T Geometric Duality for Convex Vector Optimization Problems
%J Journal of convex analysis
%D 2013
%P 813-832
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2013_20_3_JCA_2013_20_3_a9/
%F JCA_2013_20_3_JCA_2013_20_3_a9
F. Heyde. Geometric Duality for Convex Vector Optimization Problems. Journal of convex analysis, Tome 20 (2013) no. 3, pp. 813-832. http://geodesic.mathdoc.fr/item/JCA_2013_20_3_JCA_2013_20_3_a9/