Remarks on Diameter 2 Properties
Journal of convex analysis, Tome 20 (2013) no. 2, pp. 439-452.

Voir la notice de l'article provenant de la source Heldermann Verlag

If X is an infinite-dimensional uniform algebra, if X has the Daugavet property or if X is a proper M-embedded space, every relatively weakly open subset of the unit ball of the Banach space X is known to have diameter 2, i.e., X has the diameter 2 property. We prove that in these three cases even every finite convex combination of relatively weakly open subsets of the unit ball have diameter 2. Further, we identify new examples of spaces with the diameter 2 property outside the formerly known cases; in particular we observe that forming lp-sums of diameter 2 spaces does not ruin diameter 2 structure.
Classification : 46B20, 46B22
Mots-clés : Diameter 2, slice, Daugavet property, M-embedded, uniform algebra
@article{JCA_2013_20_2_JCA_2013_20_2_a6,
     author = {T. Abrahamsen and V. Lima and O. Nygaard},
     title = {Remarks on {Diameter} 2 {Properties}},
     journal = {Journal of convex analysis},
     pages = {439--452},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JCA_2013_20_2_JCA_2013_20_2_a6/}
}
TY  - JOUR
AU  - T. Abrahamsen
AU  - V. Lima
AU  - O. Nygaard
TI  - Remarks on Diameter 2 Properties
JO  - Journal of convex analysis
PY  - 2013
SP  - 439
EP  - 452
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2013_20_2_JCA_2013_20_2_a6/
ID  - JCA_2013_20_2_JCA_2013_20_2_a6
ER  - 
%0 Journal Article
%A T. Abrahamsen
%A V. Lima
%A O. Nygaard
%T Remarks on Diameter 2 Properties
%J Journal of convex analysis
%D 2013
%P 439-452
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2013_20_2_JCA_2013_20_2_a6/
%F JCA_2013_20_2_JCA_2013_20_2_a6
T. Abrahamsen; V. Lima; O. Nygaard. Remarks on Diameter 2 Properties. Journal of convex analysis, Tome 20 (2013) no. 2, pp. 439-452. http://geodesic.mathdoc.fr/item/JCA_2013_20_2_JCA_2013_20_2_a6/