An Upper Bound for the Convergence of Integral Functionals
Journal of convex analysis, Tome 20 (2013) no. 2, pp. 355-376
Cet article a éte moissonné depuis la source Heldermann Verlag
Given a $\sigma$-finite measure space $(\Omega, \mathcal{T}, \mu)$ endowed with a $\mu$-complete tribe, a separable Banach space $E$, we consider a topological vector space $(X,T)$, $X$ being a decomposable subspace of measurable $E$-valued functions defined on $\Omega$. Under a reasonable assumption on the vector topology $T$, we show that if ${(f_{n})}_{n}$ is a sequence of extended real-valued measurable integrands defined on the product $\Omega\times E$, with upper epi-limit (or upper $\Gamma$-limit) $f=ls_{e} f_{n}$, then $I_f$ is in many cases an upper bound for the $T$-upper epi-limit of the sequence $(I_{f_{n}})_n$, where $I_f$, $I_{f_{n}}$ are the integral functionals defined on $X$ associated to the integrands $f$, $f_n$. The cases of Lebesgue spaces endowed with its strong, weak, or Mackey topologies are reached. We discuss also the necessity of the given conditions.
Classification :
26A16, 26A24, 26E15, 28B20, 49J52, 54C35
Mots-clés : Integral functional, upper epi-limits, $\Gamma$-convergence, finally equi-integrable sets
Mots-clés : Integral functional, upper epi-limits, $\Gamma$-convergence, finally equi-integrable sets
@article{JCA_2013_20_2_JCA_2013_20_2_a3,
author = {E. Giner},
title = {An {Upper} {Bound} for the {Convergence} of {Integral} {Functionals}},
journal = {Journal of convex analysis},
pages = {355--376},
year = {2013},
volume = {20},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JCA_2013_20_2_JCA_2013_20_2_a3/}
}
E. Giner. An Upper Bound for the Convergence of Integral Functionals. Journal of convex analysis, Tome 20 (2013) no. 2, pp. 355-376. http://geodesic.mathdoc.fr/item/JCA_2013_20_2_JCA_2013_20_2_a3/