Smallness of Singular Sets of Semiconvex Functions in Separable Banach Spaces
Journal of convex analysis, Tome 20 (2013) no. 2, pp. 573-598.

Voir la notice de l'article provenant de la source Heldermann Verlag

\newcommand{\N}{{\mathbb N}} Let $X$ be a separable superreflexive Banach space and $f$ be a semiconvex function (with a general modulus) on $X$. For $k \in \N$, let $\Sigma_k(f)$ be the set of points $x\in X$, at which the Clarke subdifferential $\partial f(x)$ is at least $k$-dimensional. Note that $\Sigma_1(f)$ is the set of all points at which $f$ is not G\^ ateaux differentiable. Then $\Sigma_k(f)$ can be covered by countably many Lipschitz surfaces of codimension $k$ which are described by functions, which are differences of two semiconvex functions. If $X$ is separable and superreflexive Banach space which admits an equivalent norm with modulus of smoothness of power type $2$ (e.g., if $X$ is a Hilbert space or $X=L^p(\mu)$ with $2 \leq p$), we give, for a fixed modulus $\omega$ and $k \in \N$, a complete characterization of those $A\subset X$, for which there exists a function $f$ on $X$ which is semiconvex on $X$ with modulus $\omega$ and $A \subset \Sigma_k(f)$. Namely, $A\subset X$ has this property if and only if $A$ can be covered by countably many Lipschitz surfaces $S_n$ of codimension $k$ which are described by functions, which are differences of two Lipschitz semiconvex functions with modulus $C_n \omega$.
Classification : 49J52, 46G05
Mots-clés : Semiconvex function with general modulus, Clarke subdifferential, singular set, singular point of order k, Lipschitz surface, DSC surface, superreflexive space
@article{JCA_2013_20_2_JCA_2013_20_2_a14,
     author = {J. Duda and L. Zaj{\'\i}cek},
     title = {Smallness of {Singular} {Sets} of {Semiconvex} {Functions} in {Separable} {Banach} {Spaces}},
     journal = {Journal of convex analysis},
     pages = {573--598},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JCA_2013_20_2_JCA_2013_20_2_a14/}
}
TY  - JOUR
AU  - J. Duda
AU  - L. Zajícek
TI  - Smallness of Singular Sets of Semiconvex Functions in Separable Banach Spaces
JO  - Journal of convex analysis
PY  - 2013
SP  - 573
EP  - 598
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2013_20_2_JCA_2013_20_2_a14/
ID  - JCA_2013_20_2_JCA_2013_20_2_a14
ER  - 
%0 Journal Article
%A J. Duda
%A L. Zajícek
%T Smallness of Singular Sets of Semiconvex Functions in Separable Banach Spaces
%J Journal of convex analysis
%D 2013
%P 573-598
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2013_20_2_JCA_2013_20_2_a14/
%F JCA_2013_20_2_JCA_2013_20_2_a14
J. Duda; L. Zajícek. Smallness of Singular Sets of Semiconvex Functions in Separable Banach Spaces. Journal of convex analysis, Tome 20 (2013) no. 2, pp. 573-598. http://geodesic.mathdoc.fr/item/JCA_2013_20_2_JCA_2013_20_2_a14/