On one Extension of Decomposition Lemma Dealing with Weakly Converging Sequences of Gradients with Application to Nonconvex Variational Problems
Journal of convex analysis, Tome 20 (2013) no. 2, pp. 545-571
Cet article a éte moissonné depuis la source Heldermann Verlag
\def\R{{\bf R}} \def\rmn{{\R}^{m\times n}} We deal with the variant of Decomposition Lemma due to Kinderlehrer and Pedregal asserting that an arbitrary bounded sequence of gradients of Sobolev mappings $\{\nabla u_k\} \subseteq L^p(\Omega,\rmn)$, where $p>1$, can be decomposed into a sum of two sequences of gradients of Sobolev mappings: $\{\nabla z_k\}$ and $\{\nabla w_k\}$, where $\{\nabla z_k\}$ is equintegrable and carries the same oscillations, while $\{\nabla w_k\}$ carries the same concentrations as $\{\nabla u_k\}$. We additionally impose the general trace condition ``$u_k=u$'' on $F$, where $F$ is given closed subset of $\bar{\Omega}$. We show that under this assumption the sequence $\{z_k\}$ in decomposition can be chosen to satisfy also the trace condition $z_k=u$ a.e. on $F$. The result is applied to nonconvex variational problems to regularity results for sequences minimizing functionals. As the main tool we use DiPerna Majda measures.
Classification :
46E35, 49J45, 35B05
Mots-clés : Sequences of gradients, DiPerna Majda measures, concentrations, oscillations
Mots-clés : Sequences of gradients, DiPerna Majda measures, concentrations, oscillations
@article{JCA_2013_20_2_JCA_2013_20_2_a13,
author = {A. Kalamajska},
title = {On one {Extension} of {Decomposition} {Lemma} {Dealing} with {Weakly} {Converging} {Sequences} of {Gradients} with {Application} to {Nonconvex} {Variational} {Problems}},
journal = {Journal of convex analysis},
pages = {545--571},
year = {2013},
volume = {20},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JCA_2013_20_2_JCA_2013_20_2_a13/}
}
TY - JOUR AU - A. Kalamajska TI - On one Extension of Decomposition Lemma Dealing with Weakly Converging Sequences of Gradients with Application to Nonconvex Variational Problems JO - Journal of convex analysis PY - 2013 SP - 545 EP - 571 VL - 20 IS - 2 UR - http://geodesic.mathdoc.fr/item/JCA_2013_20_2_JCA_2013_20_2_a13/ ID - JCA_2013_20_2_JCA_2013_20_2_a13 ER -
%0 Journal Article %A A. Kalamajska %T On one Extension of Decomposition Lemma Dealing with Weakly Converging Sequences of Gradients with Application to Nonconvex Variational Problems %J Journal of convex analysis %D 2013 %P 545-571 %V 20 %N 2 %U http://geodesic.mathdoc.fr/item/JCA_2013_20_2_JCA_2013_20_2_a13/ %F JCA_2013_20_2_JCA_2013_20_2_a13
A. Kalamajska. On one Extension of Decomposition Lemma Dealing with Weakly Converging Sequences of Gradients with Application to Nonconvex Variational Problems. Journal of convex analysis, Tome 20 (2013) no. 2, pp. 545-571. http://geodesic.mathdoc.fr/item/JCA_2013_20_2_JCA_2013_20_2_a13/