Strongly Midquasiconvex Functions
Journal of convex analysis, Tome 20 (2013) no. 2, pp. 531-543.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\dim{\mathrm{dim\,\,}} \def\R{{\mathbb R}} \def\e{\varepsilon} Let $V$ be a nonempty convex subset of a normed space $X$ and let $\e>0$ and $p>0$ be given. A function $f: V \to \R$ is called {\em $(\e,p)$-strongly midquasiconvex} if $$ f(\frac{x+y}{2}) \leq \max [f(x), f(y)]-\e(\frac{\|x-y\|}{2})^p \text{\ \ for\ \ } x,y \in V. $$ We call $f$ $p$-strongly midquasiconvex if it is $(\e,p)$-strongly midquasiconvex with a certain $\e>0$. We show that if either $p1$ and $\dim V=1$ or $p2$ and $\dim V>1$ then there are no $p$-strongly midquasiconvex functions defined on $V$. On the other hand if $X$ is an inner product space with $\dim X \geq 2$, $p \geq 2$, then there exists an $(1,p)$-strongly midquasiconvex function defined on an arbitrary ball in $X$. \medskip Consequently, the case when $p=1$ and $\dim V=1$ is of a special interest. Under this assumptions we characterize lower semicontinuous $1$-strongly midquasiconvex functions.
Classification : 26B25, 39B62
Mots-clés : Quasiconvexity, midquasiconvex function, strongly midquasiconvex function
@article{JCA_2013_20_2_JCA_2013_20_2_a12,
     author = {J. Tabor and J. Tabor and M. Zoldak},
     title = {Strongly {Midquasiconvex} {Functions}},
     journal = {Journal of convex analysis},
     pages = {531--543},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JCA_2013_20_2_JCA_2013_20_2_a12/}
}
TY  - JOUR
AU  - J. Tabor
AU  - J. Tabor
AU  - M. Zoldak
TI  - Strongly Midquasiconvex Functions
JO  - Journal of convex analysis
PY  - 2013
SP  - 531
EP  - 543
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2013_20_2_JCA_2013_20_2_a12/
ID  - JCA_2013_20_2_JCA_2013_20_2_a12
ER  - 
%0 Journal Article
%A J. Tabor
%A J. Tabor
%A M. Zoldak
%T Strongly Midquasiconvex Functions
%J Journal of convex analysis
%D 2013
%P 531-543
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2013_20_2_JCA_2013_20_2_a12/
%F JCA_2013_20_2_JCA_2013_20_2_a12
J. Tabor; J. Tabor; M. Zoldak. Strongly Midquasiconvex Functions. Journal of convex analysis, Tome 20 (2013) no. 2, pp. 531-543. http://geodesic.mathdoc.fr/item/JCA_2013_20_2_JCA_2013_20_2_a12/