Strongly Midquasiconvex Functions
Journal of convex analysis, Tome 20 (2013) no. 2, pp. 531-543
Cet article a éte moissonné depuis la source Heldermann Verlag
\def\dim{\mathrm{dim\,\,}} \def\R{{\mathbb R}} \def\e{\varepsilon} Let $V$ be a nonempty convex subset of a normed space $X$ and let $\e>0$ and $p>0$ be given. A function $f: V \to \R$ is called {\em $(\e,p)$-strongly midquasiconvex} if $$ f(\frac{x+y}{2}) \leq \max [f(x), f(y)]-\e(\frac{\|x-y\|}{2})^p \text{\ \ for\ \ } x,y \in V. $$ We call $f$ $p$-strongly midquasiconvex if it is $(\e,p)$-strongly midquasiconvex with a certain $\e>0$. We show that if either $p1$ and $\dim V=1$ or $p2$ and $\dim V>1$ then there are no $p$-strongly midquasiconvex functions defined on $V$. On the other hand if $X$ is an inner product space with $\dim X \geq 2$, $p \geq 2$, then there exists an $(1,p)$-strongly midquasiconvex function defined on an arbitrary ball in $X$. \medskip Consequently, the case when $p=1$ and $\dim V=1$ is of a special interest. Under this assumptions we characterize lower semicontinuous $1$-strongly midquasiconvex functions.
Classification :
26B25, 39B62
Mots-clés : Quasiconvexity, midquasiconvex function, strongly midquasiconvex function
Mots-clés : Quasiconvexity, midquasiconvex function, strongly midquasiconvex function
@article{JCA_2013_20_2_JCA_2013_20_2_a12,
author = {J. Tabor and J. Tabor and M. Zoldak},
title = {Strongly {Midquasiconvex} {Functions}},
journal = {Journal of convex analysis},
pages = {531--543},
year = {2013},
volume = {20},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JCA_2013_20_2_JCA_2013_20_2_a12/}
}
J. Tabor; J. Tabor; M. Zoldak. Strongly Midquasiconvex Functions. Journal of convex analysis, Tome 20 (2013) no. 2, pp. 531-543. http://geodesic.mathdoc.fr/item/JCA_2013_20_2_JCA_2013_20_2_a12/