On Well Posed Best Approximation Problems for a Nonsymmetric Seminorm
Journal of convex analysis, Tome 20 (2013) no. 2, pp. 501-529
Cet article a éte moissonné depuis la source Heldermann Verlag
\def\inter{\mathop{\rm int}} Let $M$ be a closed convex (generally unbounded) subset of a Banach space $E$ with $0$ being an interior point of $M$, $A$ be a closed subset of $E$. Let $T_{M}(A)$ be the set of all $x_{0}\in E$ such that the problem $\smash{\min\limits_{a\in A}}\, \mu_{M} (x_{0}-a)$ is well posed, where $\mu_{M}$ is the Minkowski functional of $M$, so $\mu_{M}$ is a nonsymmetric seminorm. We obtain some asymptotic properties (appearance far from the origin) of $M$ which are necessary and/or sufficient for $S_{M}^{\inter}(A)\setminus T_{M}(A)$ to be a meagre or a $\sigma$-porous subset of $$ S_{M}^{\inter}(A)=\left\{x_{0}\in E\Big|\ 0\varrho_{M}(x_{0},A)\sup\limits_{x\in E}\varrho_{M}(x,A)\right\}\ , $$ where $\varrho_{M}(x,A)=\inf\limits_{a\in A}\mu_{M}(x-a)$.
Classification :
41A50, 41A65, 52A21
Mots-clés : Best approximation, Minkowski functional, residual set, sigma-porous set
Mots-clés : Best approximation, Minkowski functional, residual set, sigma-porous set
@article{JCA_2013_20_2_JCA_2013_20_2_a11,
author = {G. E. Ivanov},
title = {On {Well} {Posed} {Best} {Approximation} {Problems} for a {Nonsymmetric} {Seminorm}},
journal = {Journal of convex analysis},
pages = {501--529},
year = {2013},
volume = {20},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JCA_2013_20_2_JCA_2013_20_2_a11/}
}
G. E. Ivanov. On Well Posed Best Approximation Problems for a Nonsymmetric Seminorm. Journal of convex analysis, Tome 20 (2013) no. 2, pp. 501-529. http://geodesic.mathdoc.fr/item/JCA_2013_20_2_JCA_2013_20_2_a11/