On Well Posed Best Approximation Problems for a Nonsymmetric Seminorm
Journal of convex analysis, Tome 20 (2013) no. 2, pp. 501-529.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\inter{\mathop{\rm int}} Let $M$ be a closed convex (generally unbounded) subset of a Banach space $E$ with $0$ being an interior point of $M$, $A$ be a closed subset of $E$. Let $T_{M}(A)$ be the set of all $x_{0}\in E$ such that the problem $\smash{\min\limits_{a\in A}}\, \mu_{M} (x_{0}-a)$ is well posed, where $\mu_{M}$ is the Minkowski functional of $M$, so $\mu_{M}$ is a nonsymmetric seminorm. We obtain some asymptotic properties (appearance far from the origin) of $M$ which are necessary and/or sufficient for $S_{M}^{\inter}(A)\setminus T_{M}(A)$ to be a meagre or a $\sigma$-porous subset of $$ S_{M}^{\inter}(A)=\left\{x_{0}\in E\Big|\ 0\varrho_{M}(x_{0},A)\sup\limits_{x\in E}\varrho_{M}(x,A)\right\}\ , $$ where $\varrho_{M}(x,A)=\inf\limits_{a\in A}\mu_{M}(x-a)$.
Classification : 41A50, 41A65, 52A21
Mots-clés : Best approximation, Minkowski functional, residual set, sigma-porous set
@article{JCA_2013_20_2_JCA_2013_20_2_a11,
     author = {G. E. Ivanov},
     title = {On {Well} {Posed} {Best} {Approximation} {Problems} for a {Nonsymmetric} {Seminorm}},
     journal = {Journal of convex analysis},
     pages = {501--529},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JCA_2013_20_2_JCA_2013_20_2_a11/}
}
TY  - JOUR
AU  - G. E. Ivanov
TI  - On Well Posed Best Approximation Problems for a Nonsymmetric Seminorm
JO  - Journal of convex analysis
PY  - 2013
SP  - 501
EP  - 529
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2013_20_2_JCA_2013_20_2_a11/
ID  - JCA_2013_20_2_JCA_2013_20_2_a11
ER  - 
%0 Journal Article
%A G. E. Ivanov
%T On Well Posed Best Approximation Problems for a Nonsymmetric Seminorm
%J Journal of convex analysis
%D 2013
%P 501-529
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2013_20_2_JCA_2013_20_2_a11/
%F JCA_2013_20_2_JCA_2013_20_2_a11
G. E. Ivanov. On Well Posed Best Approximation Problems for a Nonsymmetric Seminorm. Journal of convex analysis, Tome 20 (2013) no. 2, pp. 501-529. http://geodesic.mathdoc.fr/item/JCA_2013_20_2_JCA_2013_20_2_a11/