Convexity on Complex Hyperbolic Space
Journal of convex analysis, Tome 20 (2013) no. 2, pp. 329-338.

Voir la notice de l'article provenant de la source Heldermann Verlag

\newcommand{\vol}{\mathop{\rm vol}} In a Riemannian manifold a regular convex domain is said to be $\lambda$-convex if its normal curvature at each point is greater than or equal to $\lambda>0$. In a Hadamard manifold, the asymptotic behaviour of the quotient $\vol(\Omega_{t})/\vol(\partial\Omega_{t})$ for a family of $\lambda$-convex domains $\Omega_{t}$ expanding over the whole space has been studied and general bounds for this quotient are known.\par In this paper we improve this general result in the complex hyperbolic space $\mathbb{C}H^n(-4k^2)$, a Hadamard manifold with constant holomorphic curvature equal to $-4k^2$. Furthermore, we give some specific properties of convex domains in $\mathbb{C}H^n(-4k^2)$ and we prove that $\lambda$-convex domains of arbitrary diameter exists if $\lambda\leq k$.
Classification : 52A20, 52A55
Mots-clés : Complex hyperbolic space, convex domain, volume, area
@article{JCA_2013_20_2_JCA_2013_20_2_a1,
     author = {J. Abardia and E. Gallego},
     title = {Convexity on {Complex} {Hyperbolic} {Space}},
     journal = {Journal of convex analysis},
     pages = {329--338},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JCA_2013_20_2_JCA_2013_20_2_a1/}
}
TY  - JOUR
AU  - J. Abardia
AU  - E. Gallego
TI  - Convexity on Complex Hyperbolic Space
JO  - Journal of convex analysis
PY  - 2013
SP  - 329
EP  - 338
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2013_20_2_JCA_2013_20_2_a1/
ID  - JCA_2013_20_2_JCA_2013_20_2_a1
ER  - 
%0 Journal Article
%A J. Abardia
%A E. Gallego
%T Convexity on Complex Hyperbolic Space
%J Journal of convex analysis
%D 2013
%P 329-338
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2013_20_2_JCA_2013_20_2_a1/
%F JCA_2013_20_2_JCA_2013_20_2_a1
J. Abardia; E. Gallego. Convexity on Complex Hyperbolic Space. Journal of convex analysis, Tome 20 (2013) no. 2, pp. 329-338. http://geodesic.mathdoc.fr/item/JCA_2013_20_2_JCA_2013_20_2_a1/