Non-Archimedean Quantitative Grothendieck and Krein's Theorems
Journal of convex analysis, Tome 20 (2013) no. 1, pp. 233-242.

Voir la notice de l'article provenant de la source Heldermann Verlag

We show that the non-archimedean version of Grothendieck's theorem about weakly compact sets for $C(X,\mathbb{K})$, the space of continuous maps on $% X $ with values in a locally compact non-trivially valued non-archimedean field $\mathbb{K}$, fails in general. Indeed, we prove that if $X$ is an infinite zero-dimensional compact space, then there exists a relatively compact set $H:=\{g_{n}:n\in \mathbb{N}\}\subset C(X,\mathbb{K})$ in the pointwise topology $\tau _{p}$ of $C(X,\mathbb{K})$ which is not $w-$% relatively compact, i.e. compact in the weak topology of $C(X,\mathbb{K})$, such that all $\Vert g_{n}\Vert =1$ and $\gamma (H):=\sup \{|\lim_{m}\lim_{n}f_{m}(x_{n})-\lim_{n}\lim_{m}f_{m}(x_{n})|:(f_{m})_{m}% \subset B,(x_{n})_{n}\subset H\}>0$, where $B$ is the closed unit ball in the dual $C(X,\mathbb{K})^{\ast }$ and the involved limits exist. The latter condition $\gamma (H)>0$ shows in fact that a quantitative version of Grothendieck's theorem for real spaces (due to Angosto and Cascales) fails in the non-archimedean setting. The classical Krein and Grothendieck's theorems ensure that for any compact space $X$ every uniformly bounded set $% H $ in a real (or complex) space $C(X)$ is $\tau _{p}$-relatively compact if and only if the absolutely convex hull $acoH$ of $H$ is $\tau _{p}$% -relatively compact. In contrast, we show that for an infinite zero-dimensional compact space $X$ the absolutely convex hull $acoH$ of a $% \tau _{p}-$relatively compact and uniformly bounded set $H$ in $C(X,\mathbb{K% })$ needs not be $\tau _{p}-$relatively compact for a locally compact non-archimedean $\mathbb{K}$. Nevertheless, our main result states that if $% H\subset C(X,\mathbb{K})$ is uniformly bounded, then $acoH$ is $\tau _{p}-$% relatively compact if and only if $H$ is $w$-relatively compact.
Classification : 46S10, 46A50, 54C35
Mots-clés : Grothendieck's theorem, Krein's theorem, locally compact non-archimedean field, compactness, space of continuous functions
@article{JCA_2013_20_1_JCA_2013_20_1_a13,
     author = {J. Kakol and A. Kubzdela},
     title = {Non-Archimedean {Quantitative} {Grothendieck} and {Krein's} {Theorems}},
     journal = {Journal of convex analysis},
     pages = {233--242},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a13/}
}
TY  - JOUR
AU  - J. Kakol
AU  - A. Kubzdela
TI  - Non-Archimedean Quantitative Grothendieck and Krein's Theorems
JO  - Journal of convex analysis
PY  - 2013
SP  - 233
EP  - 242
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a13/
ID  - JCA_2013_20_1_JCA_2013_20_1_a13
ER  - 
%0 Journal Article
%A J. Kakol
%A A. Kubzdela
%T Non-Archimedean Quantitative Grothendieck and Krein's Theorems
%J Journal of convex analysis
%D 2013
%P 233-242
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a13/
%F JCA_2013_20_1_JCA_2013_20_1_a13
J. Kakol; A. Kubzdela. Non-Archimedean Quantitative Grothendieck and Krein's Theorems. Journal of convex analysis, Tome 20 (2013) no. 1, pp. 233-242. http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a13/