Pointwise Estimates and Monotonicity Formulas without Maximum Principle
Journal of convex analysis, Tome 20 (2013) no. 1, pp. 199-22
Cet article a éte moissonné depuis la source Heldermann Verlag
We study a second order elliptic partial differential equation for which a maximum principle is not available and whose nonlinearity is not C1. We discuss the role of a pointwise gradient bound and we derive a monotonicity estimate near flat points of the free boundary.
Classification :
35B09, 35B45, 35J25, 35J61, 35R35
Mots-clés : Elliptic PDEs, a-priori estimates, monotonicity formula, free boundary
Mots-clés : Elliptic PDEs, a-priori estimates, monotonicity formula, free boundary
@article{JCA_2013_20_1_JCA_2013_20_1_a11,
author = {M. Montenegro and E. Valdinoci},
title = {Pointwise {Estimates} and {Monotonicity} {Formulas} without {Maximum} {Principle}},
journal = {Journal of convex analysis},
pages = {199--22},
year = {2013},
volume = {20},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a11/}
}
TY - JOUR AU - M. Montenegro AU - E. Valdinoci TI - Pointwise Estimates and Monotonicity Formulas without Maximum Principle JO - Journal of convex analysis PY - 2013 SP - 199 EP - 22 VL - 20 IS - 1 UR - http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a11/ ID - JCA_2013_20_1_JCA_2013_20_1_a11 ER -
M. Montenegro; E. Valdinoci. Pointwise Estimates and Monotonicity Formulas without Maximum Principle. Journal of convex analysis, Tome 20 (2013) no. 1, pp. 199-22. http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a11/