Pointwise Estimates and Monotonicity Formulas without Maximum Principle
Journal of convex analysis, Tome 20 (2013) no. 1, pp. 199-22.

Voir la notice de l'article provenant de la source Heldermann Verlag

We study a second order elliptic partial differential equation for which a maximum principle is not available and whose nonlinearity is not C1. We discuss the role of a pointwise gradient bound and we derive a monotonicity estimate near flat points of the free boundary.
Classification : 35B09, 35B45, 35J25, 35J61, 35R35
Mots-clés : Elliptic PDEs, a-priori estimates, monotonicity formula, free boundary
@article{JCA_2013_20_1_JCA_2013_20_1_a11,
     author = {M. Montenegro and E. Valdinoci},
     title = {Pointwise {Estimates} and {Monotonicity} {Formulas} without {Maximum} {Principle}},
     journal = {Journal of convex analysis},
     pages = {199--22},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a11/}
}
TY  - JOUR
AU  - M. Montenegro
AU  - E. Valdinoci
TI  - Pointwise Estimates and Monotonicity Formulas without Maximum Principle
JO  - Journal of convex analysis
PY  - 2013
SP  - 199
EP  - 22
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a11/
ID  - JCA_2013_20_1_JCA_2013_20_1_a11
ER  - 
%0 Journal Article
%A M. Montenegro
%A E. Valdinoci
%T Pointwise Estimates and Monotonicity Formulas without Maximum Principle
%J Journal of convex analysis
%D 2013
%P 199-22
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a11/
%F JCA_2013_20_1_JCA_2013_20_1_a11
M. Montenegro; E. Valdinoci. Pointwise Estimates and Monotonicity Formulas without Maximum Principle. Journal of convex analysis, Tome 20 (2013) no. 1, pp. 199-22. http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a11/