Optimal Sets for a Class of Minimization Problems with Convex Constraints
Journal of convex analysis, Tome 19 (2012) no. 3, pp. 725-758
Voir la notice de l'article provenant de la source Heldermann Verlag
We look for the minimizers of the functional Jλ(Ω) = λ|Ω| - P(Ω) among planar convex domains constrained to lie into a given ring. We prove that, according to the values of the parameter λ, the solutions are either a disc or a polygon. In this last case, we describe completely the polygonal solutions by reducing the problem to a finite dimensional optimization problem. We recover classical inequalities for convex sets involving area, perimeter and inradius or circumradius and find a new one.
Classification :
52A10, 52A38, 52A40, 49Q10
Mots-clés : Convex geometry, shape optimization, isoperimetric inequalities, length, area
Mots-clés : Convex geometry, shape optimization, isoperimetric inequalities, length, area
@article{JCA_2012_19_3_JCA_2012_19_3_a6,
author = {C. Bianchini and A. Henrot},
title = {Optimal {Sets} for a {Class} of {Minimization} {Problems} with {Convex} {Constraints}},
journal = {Journal of convex analysis},
pages = {725--758},
publisher = {mathdoc},
volume = {19},
number = {3},
year = {2012},
url = {http://geodesic.mathdoc.fr/item/JCA_2012_19_3_JCA_2012_19_3_a6/}
}
TY - JOUR AU - C. Bianchini AU - A. Henrot TI - Optimal Sets for a Class of Minimization Problems with Convex Constraints JO - Journal of convex analysis PY - 2012 SP - 725 EP - 758 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2012_19_3_JCA_2012_19_3_a6/ ID - JCA_2012_19_3_JCA_2012_19_3_a6 ER -
C. Bianchini; A. Henrot. Optimal Sets for a Class of Minimization Problems with Convex Constraints. Journal of convex analysis, Tome 19 (2012) no. 3, pp. 725-758. http://geodesic.mathdoc.fr/item/JCA_2012_19_3_JCA_2012_19_3_a6/