Convex Integrals on Sobolev Spaces
Journal of convex analysis, Tome 19 (2012) no. 3, pp. 837-852.

Voir la notice de l'article provenant de la source Heldermann Verlag

Let $j_0, j_1: \mathbb{R}\mapsto [0,\infty)$ denote convex functions vanishing at the origin, and let $\Omega$ be a bounded domain in $\mathbb{R}^3$ with sufficiently smooth boundary $\Gamma$. This paper is devoted to the study of the convex functional $$ J(u)=\int_{\Omega} j_0(u)d\Omega + \int_{\Gamma} j_1(\gamma u) d\Gamma $$ on the Sobolev space $H^1(\Omega)$. We describe the convex conjugate $J^*$ and the subdifferential $\partial J$. It is shown that the action of $\partial J$ coincides pointwise a.e. in $\Omega$ with $\partial j_0(u(x))$, and a.e on $\Gamma$ with $\partial j_1(u(x))$. These conclusions are nontrivial because, although they have been known for the subdifferentials of the functionals $J_0(u) = \int_\Omega j_0(u)d\Omega$ and $J_1(u) = \int_\Gamma j_1(\gamma u)d\Gamma$, the lack of any growth restrictions on $j_0$ and $j_1$ makes the sufficient \emph{domain condition} for the sum of two maximal monotone operators $\partial J_0$ and $\partial J_1$ infeasible to verify directly. The presented theorems extend the results of H. Br{\'e}zis [Int\'egrales convexes dans les espaces de Sobolev, Proc. Int. Symp. Partial Diff. Equations and the Geometry of Normed Linear Spaces, Jerusalem 1972, vol. 13 (1972) 9--23 (1973); MR 0341077 (49\#5827)] and fundamentally complement the emerging research literature addressing supercritical damping and sources in hyperbolic PDE's. These findings rigorously confirm that a \emph{combination} of supercritical interior and boundary damping feedbacks can be modeled by the subdifferential of a suitable convex functional on the state space.
@article{JCA_2012_19_3_JCA_2012_19_3_a10,
     author = {V. Barbu and Y. Guo and M. A. Rammaha and D. Toundykov},
     title = {Convex {Integrals} on {Sobolev} {Spaces}},
     journal = {Journal of convex analysis},
     pages = {837--852},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2012},
     url = {http://geodesic.mathdoc.fr/item/JCA_2012_19_3_JCA_2012_19_3_a10/}
}
TY  - JOUR
AU  - V. Barbu
AU  - Y. Guo
AU  - M. A. Rammaha
AU  - D. Toundykov
TI  - Convex Integrals on Sobolev Spaces
JO  - Journal of convex analysis
PY  - 2012
SP  - 837
EP  - 852
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2012_19_3_JCA_2012_19_3_a10/
ID  - JCA_2012_19_3_JCA_2012_19_3_a10
ER  - 
%0 Journal Article
%A V. Barbu
%A Y. Guo
%A M. A. Rammaha
%A D. Toundykov
%T Convex Integrals on Sobolev Spaces
%J Journal of convex analysis
%D 2012
%P 837-852
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2012_19_3_JCA_2012_19_3_a10/
%F JCA_2012_19_3_JCA_2012_19_3_a10
V. Barbu; Y. Guo; M. A. Rammaha; D. Toundykov. Convex Integrals on Sobolev Spaces. Journal of convex analysis, Tome 19 (2012) no. 3, pp. 837-852. http://geodesic.mathdoc.fr/item/JCA_2012_19_3_JCA_2012_19_3_a10/