A Relaxation Result for Non-Convex and Non-Coercive Simple Integrals
Journal of convex analysis, Tome 19 (2012) no. 1, pp. 225-248.

Voir la notice de l'article provenant de la source Heldermann Verlag

We consider the following classical autonomous variational problem: Minimize \[\left\{F(u)=\int_a^b f(u(x),u'(x))\,dx\,:\,u\in AC([a,b]), u(a)=\alpha, u(b)=\beta,\,u([a,b]) \subseteq I \right\}\] where $I$ is a real interval, $\alpha, \beta\in I$, and $f:I\times \mathbb{R}\to [0,+\infty)$ is possibly neither continuous, nor coercive, nor convex; in particular $f(s,\cdot)$ may be not convex at $0$. Assuming the solvability of the relaxed problem, we prove under mild assumptions that the above variational problem has a solution, too.
Classification : 49K05,49J05
Mots-clés : Non-convex variational problem, non-coercive variational problem, autonomous variational problem, relaxation result
@article{JCA_2012_19_1_JCA_2012_19_1_a13,
     author = {M. Bianchini and G. Cupini},
     title = {A {Relaxation} {Result} for {Non-Convex} and {Non-Coercive} {Simple} {Integrals}},
     journal = {Journal of convex analysis},
     pages = {225--248},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2012},
     url = {http://geodesic.mathdoc.fr/item/JCA_2012_19_1_JCA_2012_19_1_a13/}
}
TY  - JOUR
AU  - M. Bianchini
AU  - G. Cupini
TI  - A Relaxation Result for Non-Convex and Non-Coercive Simple Integrals
JO  - Journal of convex analysis
PY  - 2012
SP  - 225
EP  - 248
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2012_19_1_JCA_2012_19_1_a13/
ID  - JCA_2012_19_1_JCA_2012_19_1_a13
ER  - 
%0 Journal Article
%A M. Bianchini
%A G. Cupini
%T A Relaxation Result for Non-Convex and Non-Coercive Simple Integrals
%J Journal of convex analysis
%D 2012
%P 225-248
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2012_19_1_JCA_2012_19_1_a13/
%F JCA_2012_19_1_JCA_2012_19_1_a13
M. Bianchini; G. Cupini. A Relaxation Result for Non-Convex and Non-Coercive Simple Integrals. Journal of convex analysis, Tome 19 (2012) no. 1, pp. 225-248. http://geodesic.mathdoc.fr/item/JCA_2012_19_1_JCA_2012_19_1_a13/