A Differential Characterisation of the Minimax Inequality
Journal of convex analysis, Tome 19 (2012) no. 1, pp. 185-199.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\R{\mathbb{R}} We prove the following result: let $K\subseteq \R^N$ be convex with nonempty interior, $X$ a topological space and $f\colon K\times X\to\R$ be concave and u.s.c. in the first variable and coercive and l.s.c. in the second. Then the (perturbed) strict minimax inequality \[ \sup_{\lambda\in K}\inf_{x\in X}f(\lambda,x)+g(\lambda)\inf_{x\in X} \sup_{\lambda\in K}f(\lambda,x)+g(\lambda), \] for some continuous concave $g\colon K\to\R$, is equivalent to the following condition on superdifferentials: if $F(\lambda)=\inf_X f(\lambda, x)$, for some $\lambda\in\mathring{K}$ \[ \partial F(\lambda)\setminus \bigcup_{\substack{x\in X\\ f(\lambda, x) =F(\lambda)}}\partial f(\lambda, x)\neq\emptyset. \] As an application of this differential characterisation we prove a generalised version of a theorem of Ricceri, a criterion of regularity for marginal functions, and the fact that to check whether some perturbed minimax inequality holds, one can test with affine perturbation only.
Mots-clés : Minimax inequality, concave functions, marginal functions, multiple solutions to variational problems, nonlinear eigenvalues
@article{JCA_2012_19_1_JCA_2012_19_1_a10,
     author = {S. J. N. Mosconi},
     title = {A {Differential} {Characterisation} of the {Minimax} {Inequality}},
     journal = {Journal of convex analysis},
     pages = {185--199},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2012},
     url = {http://geodesic.mathdoc.fr/item/JCA_2012_19_1_JCA_2012_19_1_a10/}
}
TY  - JOUR
AU  - S. J. N. Mosconi
TI  - A Differential Characterisation of the Minimax Inequality
JO  - Journal of convex analysis
PY  - 2012
SP  - 185
EP  - 199
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2012_19_1_JCA_2012_19_1_a10/
ID  - JCA_2012_19_1_JCA_2012_19_1_a10
ER  - 
%0 Journal Article
%A S. J. N. Mosconi
%T A Differential Characterisation of the Minimax Inequality
%J Journal of convex analysis
%D 2012
%P 185-199
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2012_19_1_JCA_2012_19_1_a10/
%F JCA_2012_19_1_JCA_2012_19_1_a10
S. J. N. Mosconi. A Differential Characterisation of the Minimax Inequality. Journal of convex analysis, Tome 19 (2012) no. 1, pp. 185-199. http://geodesic.mathdoc.fr/item/JCA_2012_19_1_JCA_2012_19_1_a10/