Epigraphical Cones II
Journal of convex analysis, Tome 19 (2012) no. 1, pp. 1-21.

Voir la notice de l'article provenant de la source Heldermann Verlag

This is the second part of a work devoted to the theory of epigraphical cones and their applications. For part one see this journal 18 (2011) 1171--1196. A convex cone K in the Euclidean space Rn+1 is an epigraphical cone if it can be represented as epigraph of a nonnegative sublinear function f from Rn to R. We explore the link between the geometric properties of K and the analytic properties of f.
Classification : 46B10, 46B20, 52A41
Mots-clés : Convex cone, epigraphical cone, sublinear function, smoothness, rotundity, Vinberg characteristic function, conic programming
@article{JCA_2012_19_1_JCA_2012_19_1_a0,
     author = {A. Seeger},
     title = {Epigraphical {Cones} {II}},
     journal = {Journal of convex analysis},
     pages = {1--21},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2012},
     url = {http://geodesic.mathdoc.fr/item/JCA_2012_19_1_JCA_2012_19_1_a0/}
}
TY  - JOUR
AU  - A. Seeger
TI  - Epigraphical Cones II
JO  - Journal of convex analysis
PY  - 2012
SP  - 1
EP  - 21
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2012_19_1_JCA_2012_19_1_a0/
ID  - JCA_2012_19_1_JCA_2012_19_1_a0
ER  - 
%0 Journal Article
%A A. Seeger
%T Epigraphical Cones II
%J Journal of convex analysis
%D 2012
%P 1-21
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2012_19_1_JCA_2012_19_1_a0/
%F JCA_2012_19_1_JCA_2012_19_1_a0
A. Seeger. Epigraphical Cones II. Journal of convex analysis, Tome 19 (2012) no. 1, pp. 1-21. http://geodesic.mathdoc.fr/item/JCA_2012_19_1_JCA_2012_19_1_a0/