Epigraphical Cones II
Journal of convex analysis, Tome 19 (2012) no. 1, pp. 1-21
Cet article a éte moissonné depuis la source Heldermann Verlag
This is the second part of a work devoted to the theory of epigraphical cones and their applications. For part one see this journal 18 (2011) 1171--1196. A convex cone K in the Euclidean space Rn+1 is an epigraphical cone if it can be represented as epigraph of a nonnegative sublinear function f from Rn to R. We explore the link between the geometric properties of K and the analytic properties of f.
Classification :
46B10, 46B20, 52A41
Mots-clés : Convex cone, epigraphical cone, sublinear function, smoothness, rotundity, Vinberg characteristic function, conic programming
Mots-clés : Convex cone, epigraphical cone, sublinear function, smoothness, rotundity, Vinberg characteristic function, conic programming
@article{JCA_2012_19_1_JCA_2012_19_1_a0,
author = {A. Seeger},
title = {Epigraphical {Cones} {II}},
journal = {Journal of convex analysis},
pages = {1--21},
year = {2012},
volume = {19},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JCA_2012_19_1_JCA_2012_19_1_a0/}
}
A. Seeger. Epigraphical Cones II. Journal of convex analysis, Tome 19 (2012) no. 1, pp. 1-21. http://geodesic.mathdoc.fr/item/JCA_2012_19_1_JCA_2012_19_1_a0/