Symmetry in Multi-Phase Overdetermined Problems
Journal of convex analysis, Tome 18 (2011) no. 4, pp. 1013-1024.

Voir la notice de l'article provenant de la source Heldermann Verlag

We prove symmetry for a multi-phase overdetermined problem, with nonlinear governing equations. The most simple form of our problem (in the two-phase case) is as follows: For a bounded $C^1$ domain $\Omega \subset \mathbb{R}^n$ ($n\geq 2$) let $u^+$ be the Green's function (for the $p$-Laplace operator) with pole at some interior point (origin, say), and $u^-$ the Green's function in the exterior with pole at infinity. If for some strictly increasing function $F(t)$ (with some growth assumption) the condition $ \partial_\nu u^+ = F(\partial_\nu u^-)$ holds on the boundary $\partial \Omega$, then $\Omega$ is necessarily a ball. We prove the more general multi-phase analog of this problem.
Classification : 35R35, 35B06
Mots-clés : Symmetry, overdetermined problems, multi-phases, viscosity solutions, Green's function
@article{JCA_2011_18_4_JCA_2011_18_4_a5,
     author = {C. Babaoglu and H. Shahgholian},
     title = {Symmetry in {Multi-Phase} {Overdetermined} {Problems}},
     journal = {Journal of convex analysis},
     pages = {1013--1024},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2011},
     url = {http://geodesic.mathdoc.fr/item/JCA_2011_18_4_JCA_2011_18_4_a5/}
}
TY  - JOUR
AU  - C. Babaoglu
AU  - H. Shahgholian
TI  - Symmetry in Multi-Phase Overdetermined Problems
JO  - Journal of convex analysis
PY  - 2011
SP  - 1013
EP  - 1024
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2011_18_4_JCA_2011_18_4_a5/
ID  - JCA_2011_18_4_JCA_2011_18_4_a5
ER  - 
%0 Journal Article
%A C. Babaoglu
%A H. Shahgholian
%T Symmetry in Multi-Phase Overdetermined Problems
%J Journal of convex analysis
%D 2011
%P 1013-1024
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2011_18_4_JCA_2011_18_4_a5/
%F JCA_2011_18_4_JCA_2011_18_4_a5
C. Babaoglu; H. Shahgholian. Symmetry in Multi-Phase Overdetermined Problems. Journal of convex analysis, Tome 18 (2011) no. 4, pp. 1013-1024. http://geodesic.mathdoc.fr/item/JCA_2011_18_4_JCA_2011_18_4_a5/