Moderation of Convex Bodies
Journal of convex analysis, Tome 18 (2011) no. 3, pp. 865-872.

Voir la notice de l'article provenant de la source Heldermann Verlag

Everybody knows what an extreme point of a convex body is. Does this notion have an opposite? A most non-extreme point? Or: can we somehow say that a point is more or less extreme than another? In this paper we show a way to do this. We shall define the notion of moderation for points of a convex body. Then the points of largest moderation will be the moderate, those of smallest moderation the extreme points, as you would expect.
@article{JCA_2011_18_3_JCA_2011_18_3_a16,
     author = {J. Itoh and T. Zamfirescu},
     title = {Moderation of {Convex} {Bodies}},
     journal = {Journal of convex analysis},
     pages = {865--872},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2011},
     url = {http://geodesic.mathdoc.fr/item/JCA_2011_18_3_JCA_2011_18_3_a16/}
}
TY  - JOUR
AU  - J. Itoh
AU  - T. Zamfirescu
TI  - Moderation of Convex Bodies
JO  - Journal of convex analysis
PY  - 2011
SP  - 865
EP  - 872
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2011_18_3_JCA_2011_18_3_a16/
ID  - JCA_2011_18_3_JCA_2011_18_3_a16
ER  - 
%0 Journal Article
%A J. Itoh
%A T. Zamfirescu
%T Moderation of Convex Bodies
%J Journal of convex analysis
%D 2011
%P 865-872
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2011_18_3_JCA_2011_18_3_a16/
%F JCA_2011_18_3_JCA_2011_18_3_a16
J. Itoh; T. Zamfirescu. Moderation of Convex Bodies. Journal of convex analysis, Tome 18 (2011) no. 3, pp. 865-872. http://geodesic.mathdoc.fr/item/JCA_2011_18_3_JCA_2011_18_3_a16/