Higher Integrability for Solutions to Variational Problems with Fast Growth
Journal of convex analysis, Tome 18 (2011) no. 1, pp. 173-18
Voir la notice de l'article provenant de la source Heldermann Verlag
We prove higher integrability properties of solutions to variational problems of minimizing $$ \int_\Omega [e^{f(\|\nabla u(x)\|)}+g(x,u(x))]\,dx $$ where $f$ is a convex function satisfying some additional conditions.
@article{JCA_2011_18_1_JCA_2011_18_1_a8,
author = {A. Cellina and M. Mazzola},
title = {Higher {Integrability} for {Solutions} to {Variational} {Problems} with {Fast} {Growth}},
journal = {Journal of convex analysis},
pages = {173--18},
publisher = {mathdoc},
volume = {18},
number = {1},
year = {2011},
url = {http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a8/}
}
TY - JOUR AU - A. Cellina AU - M. Mazzola TI - Higher Integrability for Solutions to Variational Problems with Fast Growth JO - Journal of convex analysis PY - 2011 SP - 173 EP - 18 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a8/ ID - JCA_2011_18_1_JCA_2011_18_1_a8 ER -
A. Cellina; M. Mazzola. Higher Integrability for Solutions to Variational Problems with Fast Growth. Journal of convex analysis, Tome 18 (2011) no. 1, pp. 173-18. http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a8/