A Weighted Steiner Minimal Tree for Convex Quadrilaterals on the Two-Dimensional K-Plane
Journal of convex analysis, Tome 18 (2011) no. 1, pp. 139-152
Voir la notice de l'article provenant de la source Heldermann Verlag
We provide a method to find a weighted Steiner minimal tree for convex quadrilaterals on a two-dimensional hemisphere of radius $\frac{1}{\sqrt{K}}$, for $K>0$ and the two dimensional hyperbolic plane of constant Gaussian Curvature K, for $K0$ by introducing a method of cyclical differentiation of the objective function with respect to four variable angles. By applying this method, we find a generalized solution to a problem posed by C.F. Gauss in the spirit of weighted Steiner trees.
Classification :
51E12, 52A10, 52A55, 51E10
Mots-clés : Steiner minimal tree, generalized convex quadrilaterals
Mots-clés : Steiner minimal tree, generalized convex quadrilaterals
@article{JCA_2011_18_1_JCA_2011_18_1_a6,
author = {A. Zachos},
title = {A {Weighted} {Steiner} {Minimal} {Tree} for {Convex} {Quadrilaterals} on the {Two-Dimensional} {K-Plane}},
journal = {Journal of convex analysis},
pages = {139--152},
publisher = {mathdoc},
volume = {18},
number = {1},
year = {2011},
url = {http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a6/}
}
TY - JOUR AU - A. Zachos TI - A Weighted Steiner Minimal Tree for Convex Quadrilaterals on the Two-Dimensional K-Plane JO - Journal of convex analysis PY - 2011 SP - 139 EP - 152 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a6/ ID - JCA_2011_18_1_JCA_2011_18_1_a6 ER -
A. Zachos. A Weighted Steiner Minimal Tree for Convex Quadrilaterals on the Two-Dimensional K-Plane. Journal of convex analysis, Tome 18 (2011) no. 1, pp. 139-152. http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a6/