Existence of an Absolute Minimizer via Perron's Method
Journal of convex analysis, Tome 18 (2011) no. 1, pp. 277-284.

Voir la notice de l'article provenant de la source Heldermann Verlag

The existence of an absolute minimizer for a functional \[ F(u,\Omega) = \underset{x \in \Omega}{ \text{ess sup}} \, f (x, u(x), Du(x)) \] is proved by using Perron's method. The function is assumed to be quasiconvex and uniformly coercive. This completes the result by T. Champion, L. De Pascale and F. Prinari [Gamma-convergence and absolute minimizers for supremal functionals, ESAIM Control Optim. Calc. Var. 10 (2004), No. 1, 14--27 (electronic)].
Classification : 49J45, 49J99
Mots-clés : Supremal functionals, absolute minimizer
@article{JCA_2011_18_1_JCA_2011_18_1_a14,
     author = {V. Julin},
     title = {Existence of an {Absolute} {Minimizer} via {Perron's} {Method}},
     journal = {Journal of convex analysis},
     pages = {277--284},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2011},
     url = {http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a14/}
}
TY  - JOUR
AU  - V. Julin
TI  - Existence of an Absolute Minimizer via Perron's Method
JO  - Journal of convex analysis
PY  - 2011
SP  - 277
EP  - 284
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a14/
ID  - JCA_2011_18_1_JCA_2011_18_1_a14
ER  - 
%0 Journal Article
%A V. Julin
%T Existence of an Absolute Minimizer via Perron's Method
%J Journal of convex analysis
%D 2011
%P 277-284
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a14/
%F JCA_2011_18_1_JCA_2011_18_1_a14
V. Julin. Existence of an Absolute Minimizer via Perron's Method. Journal of convex analysis, Tome 18 (2011) no. 1, pp. 277-284. http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a14/