Existence of an Absolute Minimizer via Perron's Method
Journal of convex analysis, Tome 18 (2011) no. 1, pp. 277-284
Cet article a éte moissonné depuis la source Heldermann Verlag
The existence of an absolute minimizer for a functional \[ F(u,\Omega) = \underset{x \in \Omega}{ \text{ess sup}} \, f (x, u(x), Du(x)) \] is proved by using Perron's method. The function is assumed to be quasiconvex and uniformly coercive. This completes the result by T. Champion, L. De Pascale and F. Prinari [Gamma-convergence and absolute minimizers for supremal functionals, ESAIM Control Optim. Calc. Var. 10 (2004), No. 1, 14--27 (electronic)].
Classification :
49J45, 49J99
Mots-clés : Supremal functionals, absolute minimizer
Mots-clés : Supremal functionals, absolute minimizer
@article{JCA_2011_18_1_JCA_2011_18_1_a14,
author = {V. Julin},
title = {Existence of an {Absolute} {Minimizer} via {Perron's} {Method}},
journal = {Journal of convex analysis},
pages = {277--284},
year = {2011},
volume = {18},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a14/}
}
V. Julin. Existence of an Absolute Minimizer via Perron's Method. Journal of convex analysis, Tome 18 (2011) no. 1, pp. 277-284. http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a14/