An Abstract Convex Representation of Maximal Abstract Monotone Operators
Journal of convex analysis, Tome 18 (2011) no. 1, pp. 259-275.

Voir la notice de l'article provenant de la source Heldermann Verlag

We develop a theory of monotone operators in the framework of abstract convexity. We present a definition for abstract monotone operators and some examples of an abstract convex function such that its subdifferential is a maximal abstract monotone operator. Finally, we give an abstract convex representation for maximal abstract monotone operators.
Classification : 47H05, 47H04, 52A01, 26A48, 26A51
Mots-clés : Monotone operator, abstract monotonicity, abstract convex function, abstract convexity, IPH function
@article{JCA_2011_18_1_JCA_2011_18_1_a13,
     author = {H. Mohebi and A. C. Eberhard},
     title = {An {Abstract} {Convex} {Representation} of {Maximal} {Abstract} {Monotone} {Operators}},
     journal = {Journal of convex analysis},
     pages = {259--275},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2011},
     url = {http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a13/}
}
TY  - JOUR
AU  - H. Mohebi
AU  - A. C. Eberhard
TI  - An Abstract Convex Representation of Maximal Abstract Monotone Operators
JO  - Journal of convex analysis
PY  - 2011
SP  - 259
EP  - 275
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a13/
ID  - JCA_2011_18_1_JCA_2011_18_1_a13
ER  - 
%0 Journal Article
%A H. Mohebi
%A A. C. Eberhard
%T An Abstract Convex Representation of Maximal Abstract Monotone Operators
%J Journal of convex analysis
%D 2011
%P 259-275
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a13/
%F JCA_2011_18_1_JCA_2011_18_1_a13
H. Mohebi; A. C. Eberhard. An Abstract Convex Representation of Maximal Abstract Monotone Operators. Journal of convex analysis, Tome 18 (2011) no. 1, pp. 259-275. http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a13/