An Abstract Convex Representation of Maximal Abstract Monotone Operators
Journal of convex analysis, Tome 18 (2011) no. 1, pp. 259-275
Cet article a éte moissonné depuis la source Heldermann Verlag
We develop a theory of monotone operators in the framework of abstract convexity. We present a definition for abstract monotone operators and some examples of an abstract convex function such that its subdifferential is a maximal abstract monotone operator. Finally, we give an abstract convex representation for maximal abstract monotone operators.
Classification :
47H05, 47H04, 52A01, 26A48, 26A51
Mots-clés : Monotone operator, abstract monotonicity, abstract convex function, abstract convexity, IPH function
Mots-clés : Monotone operator, abstract monotonicity, abstract convex function, abstract convexity, IPH function
@article{JCA_2011_18_1_JCA_2011_18_1_a13,
author = {H. Mohebi and A. C. Eberhard},
title = {An {Abstract} {Convex} {Representation} of {Maximal} {Abstract} {Monotone} {Operators}},
journal = {Journal of convex analysis},
pages = {259--275},
year = {2011},
volume = {18},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a13/}
}
TY - JOUR AU - H. Mohebi AU - A. C. Eberhard TI - An Abstract Convex Representation of Maximal Abstract Monotone Operators JO - Journal of convex analysis PY - 2011 SP - 259 EP - 275 VL - 18 IS - 1 UR - http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a13/ ID - JCA_2011_18_1_JCA_2011_18_1_a13 ER -
H. Mohebi; A. C. Eberhard. An Abstract Convex Representation of Maximal Abstract Monotone Operators. Journal of convex analysis, Tome 18 (2011) no. 1, pp. 259-275. http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a13/